Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain
Date
2014-07-01
Author
AK, METİN
Yildiz, Huseyin Bekir
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
22
views
0
downloads
Cite This
A new photosensitive and thermosensitive monomer, namely bis(4-(3-thienyl ethylene)-oxycarbonyl)diazobenzene (TDAZO), was synthesized. The photochemical and thermal cis-trans isomerization of the monomer has been investigated. The rate constants of the photoisomerization of TDAZO in ACN and DCM were 0.195 and 0.308 min(-1), respectively. For spectroelectrochemical investigation and enzyme immobilization application, TDAZO copolymerized with thiophene and pyrrole. Electrochemical and spectroelectrochemical properties of P(TDAZO-co-Th) were investigated and invertase was immobilized in P(TDAZO-co-Py) copolymer. Immobilization of enzymes was carried out by the entrapment of the enzyme in conducting polymer matrices during electrochemical polymerization of pyrrole through thiophene moieties of the TDAZO. Optimum conditions for this electrode, such as pH, temperature, kinetic parameters (K (m) and V (max)) and operational stability were investigated. Kinetic parameters invertase-immobilized in copolymer were smaller than free enzyme. The optimum operational temperature was 10 A degrees C higher for immobilized enzyme than that of the free enzyme. Due to strong interaction between enzyme and diazo group in the polymer main chain, thermal, pH and operational stability of enzyme has been enhanced.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/41568
Journal
POLYMER BULLETIN
DOI
https://doi.org/10.1007/s00289-014-1157-7
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Synthesis and characterization of a new soluble conducting polymer and its electrochromic device
Varis, Serhat; Ak, Metin; Tanyeli, Cihangir; Akhmedov, Idris Mecidoglu; Toppare, Levent Kamil (Elsevier BV, 2006-12-01)
A mixture of isomers 2,5-di(4-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole, 2-(4-methyl-thiophen-2-yl)-5-(3-methyl-thiophen-2-yl)1-(4-nitrophenyl)-1H-pyrrole and 2,5-di(3-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole (Me-SNS(NO2)) were synthesized. Resulting monomers were polymerized chemically, producing soluble polymers in common organic solvents. The average molecular weight has been determined by gel permeation chromatography (GPC) as Mn = 5.6 x 10(3) for the chemically synthesized polymer. T...
Synthesis and mesophase properties of block and random co-polymers of electroactive and liquid crystalline monomers
Yilmaz, F; Kasapoglu, F; Hepuzer, Y; Yagci, Y; Toppare, Levent Kamil; Fernandes, EG; Galli, G (Informa UK Limited, 2005-01-01)
Homo-polymers and random co-polymers of electroactive and liquid crystalline monomers, namely 3-thienylmethyl methacrylate (MTM) and 6-(4-cyanobiphenyl-4'-oxy)hexyl acrylate (LC6), were prepared by conventional free radical polymerization. Block co-polymers of MTM and LC6 were also synthesized by using the 1,1-diphenylethene (DPE) method. The obtained random and block co-polymers exhibited liquid crystal behavior depending on the content of the LC6 units. It was found that microphase separation of the polym...
Conduction mechanism in H-type polysiloxane-polypyrrole block copolymers
BOZKURT, AYHAN; Parlak, Mehmet; Ercelebi, C; Toppare, Levent Kamil (Wiley, 2002-07-05)
Conducting polymers of polysiloxane-polypyrrole were Synthesized by electropolymerization of the pyrrole monomer through pyrrole moieties in N-pyrrole-terminated polysiloxanes. Sodium paratoluene sulfonate was used as the electrolyte. Scanning electron microscopy (SEM) was used to determine the surface morphology of the films. The room-temperature conductivity values of the films were found to be in the range of 1.9-4.4 x 10(-4) (Omega cm)(-1), depending on the supporting electrolyte concentration. The temp...
Synthesis of conducting block and graft copolymers with polyether segments
Yagci, Y; Toppare, Levent Kamil (Wiley, 2000-07-01)
Synthesis of block and graft copolymers containing polyether and conducting polypyrrole sequences were described. Pyrrole moieties were incorporated at the chain ends of polytetrahydrofuran and polysiloxane and at the side chains of polyethyl vinylether by ionic polymerization and appropriate chemical reactions. Subsequent electropolymerization with pyrrole through these moities yielded free standing films of the corresponding block and graft copolymers. The formation copolymers was evidenced by FTIR spectr...
Synthesis and Characterization of Conducting Copolymers of Bisphenol A-Diglycidyl Ether with Thiophene Side-Groups and Pyrrole
Sahmetlioglu, Ertugrul; Varol, Ramazan; Toppare, Levent Kamil; Yuruk, Huseyin (Informa UK Limited, 2009-01-01)
Copolymers of bisphenol A-diglycidyl ether with thiophene side-groups and pyrrole were synthesized by electrochemical polymerization. Bisphenol A-diglycidyl ether with thiophene side-groups (DGEBATh) was obtained from the reaction between bisphenol A-diglycidyl ether (DGEBA) and thiophene-3-acetic acid. The syntheses of copolymers of DGEBATh and pyrrole were achieved electrochemically using three different supporting electrolytes, p-toluene sulfonic acid (PTSA), sodium dodecyl sulfate (SDS) and tetrabutylam...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. AK, H. B. Yildiz, and L. K. Toppare, “Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain,”
POLYMER BULLETIN
, pp. 1827–1841, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41568.