Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Light illumination effect on the electrical and photovoltaic properties of In6S7 crystals
Date
2006-05-17
Author
Qasrawi, AF
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
0
downloads
The electrical and photoelectrical properties of In6S7 crystals have been investigated in the temperature regions of 170-300 K and 150-300 K, respectively. The dark electrical analysis revealed the intrinsic type of conduction. The energy band gap obtained from the temperature-dependent dark current is found to be 0.75 eV. It is observed that the photocurrent increases in the temperature range of 150 K up to T-m = 230 K and decreases at T > T-m. Two photoconductivity activation energies of 0.21 and 0.10 eV were determined for the temperature ranges below and above Tm, respectively. The photocurrent (I-ph)-illumination intensity (F) dependence follows the law I-ph alpha F-gamma. The value of. decreases when the temperature is raised to T-m, then it starts increasing. The change in the value. with temperature is attributed to the exchange in role between the recombination and trapping centres in the crystal. The crystals are found to exhibit photovoltaic properties. The photovoltage is recorded as a function of illumination intensity at room temperature. The maximum open-circuit voltage and short-circuit photocurrent density, which are related to an illumination intensity equivalent to one sun, are 0.12 V and 0.38 mA cm(-2), respectively.
Subject Keywords
General Materials Science
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/41629
Journal
JOURNAL OF PHYSICS-CONDENSED MATTER
DOI
https://doi.org/10.1088/0953-8984/18/19/014
Collections
Department of Physics, Article