Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Near-surface topology and flow structure on a delta wing
Date
2004-02-01
Author
Yavuz, Mehmet Metin
Rockwell, D
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
242
views
0
downloads
Cite This
The streamlines, and the corresponding patterns of velocity and vorticity, are characterized on a plane immediately adjacent to the surface of a delta wing using a laser-based technique of high-image-density particle image velocimetry. This technique provides the sequence of instantaneous states, as well as the corresponding time-averaged state, of the near-surface streamline topology and the associated critical points. These topological features are interpreted in terms of patterns of averaged and unsteady velocity, and averaged vorticity, which allow identification of regions of unsteadiness along the surface of the wing. These representations of the flow patterns on the stationary wing are also employed for the case of the wing subjected to small-amplitude perturbations in the pitching mode. Perturbations at or near the inherent frequency of the predominant unsteady event on the stationary wing yield substantial changes of the surface topology and flow structure. Furthermore, response of this topology and flow structure to transient, ramplike pitching motion is addressed to define the succession of states during the relaxation process immediately after cessation of the wing motion.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/47518
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/1.3499
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Near-surface topology of unmanned combat air vehicle planform: Reynolds number dependence
Elkhoury, M; Yavuz, Mehmet Metin; Rockwell, D (American Institute of Aeronautics and Astronautics (AIAA), 2005-09-01)
The Reynolds number dependence of the near-surface flow structure and topology on a representative unmanned combat air vehicle planform is characterized using a technique of high-image-density particle image velocimetry, to complement classical dye visualization. Patterns of streamline topology, including bifurcation lines, as well as contours of streamwise and transverse velocity, surface-normal vorticity, and Reynolds stress correlation, all immediately adjacent to the surface of the planform, provide qua...
FREE-VIBRATION ANALYSIS OF LAMINATED COMPOSITE TRUNCATED CIRCULAR CONICAL SHELLS
Kayran, Altan (1990-07-01)
An analysis is presented for the free vibration characteristics of isotropic and laminated composite truncated circular conical shells including transverse shear deformation. All components of translatory and rotatory inertia are included. The applicability of linear shell theory due to Reissner is assumed, and governing equations are solved for the natural frequencies and mode shapes by using a combination of modal iteration and transfer matrix approach for different boundary conditions. Natural frequencie...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. M. Yavuz and D. Rockwell, “Near-surface topology and flow structure on a delta wing,”
AIAA JOURNAL
, pp. 332–340, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47518.