Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A novel zero-dead-volume sample loading interface for microfluidic devices: flexible hydraulic reservoir (FHR)
Download
index.pdf
Date
2018-09-01
Author
Hatipoğlu, Utku
ÇETİN, BARBAROS
Yıldırım, Ender
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
109
views
0
downloads
Cite This
Infusing minute amounts of valuable liquids such as samples to microfluidic chips by using common pumping schemes such as syringe pumps often result in an excessive dead-volume. We present a simple yet effective sample loading interface, which helps by pumping the sample to the chip by using the hydraulic pressure generated by the syringe pump. Results show that sample volumes as low as 25 mu l can be delivered at flow rates ranging between 10-30 mu l min(-1). Maximum dead volume ratio was observed to be 3% when infusing 200 mu l of sample at 10 mu l min(-1).
Subject Keywords
Mechanical Engineering
,
Electrical and Electronic Engineering
,
Mechanics of Materials
,
Electronic, Optical and Magnetic Materials
URI
https://hdl.handle.net/11511/41759
Journal
JOURNAL OF MICROMECHANICS AND MICROENGINEERING
DOI
https://doi.org/10.1088/1361-6439/aac333
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process
Torunbalci, Mustafa Mert; Alper, Said Emre; Akın, Tayfun (IOP Publishing, 2015-12-01)
This paper presents a novel, inherently simple, and low-cost fabrication and hermetic packaging method developed for SOI-MEMS devices, where a single SOI wafer is used for the fabrication of MEMS structures as well as vertical feedthroughs, while a single glass cap wafer is used for hermetic encapsulation and routing metallization. Hermetic encapsulation can be achieved either with the silicon-glass anodic or Au-Si eutectic bonding techniques. The dies sealed with anodic and Au-Si eutectic bonding provide a...
Design and fabrication of a high performance resonant MEMS temperature sensor
Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (IOP Publishing, 2016-04-01)
This paper presents a high performance MEMS temperature sensor comprised of a double-ended-tuning-fork (DETF) resonator and strain-amplifying beam structure. The temperature detection is based on the 'thermal strain induced frequency variations' of the DETF resonator. The major source of thermal strain leading to the frequency shifts is the difference in thermal expansion coefficients of the substrate and the device layers of the fabricated structures. By selecting the substrate as glass and the device laye...
Characterization of T1InS1.8Se0.2 as advanced functional crystals
Qasrawi, A. F.; Atatreh, Areen A. M.; Hasanlı, Nızamı (Elsevier BV, 2018-11-15)
In this work, selenium doped TlInS1.8Se0.2 crystals are used to fabricate multifunctional devices that can handle more than one duty at a time. After revealing the morphological, compositional, structural and optical properties of the doped crystal, it is sandwiched between Ag and carbon metals. The crystals are characterized by means of ultraviolet-visible light spectrophotometry, impedance spectroscopy and illumination dependent current-voltage characteristics techniques. While the optical spectroscopy al...
Electrical characterization of vacuum-deposited n-CdS/p-CdTe heterojunction devices
Bayhan, H; Ercelebi, C (IOP Publishing, 1997-05-01)
The effects of post-deposition processes such as CdCl2 dip and/or annealing in air on the material and device properties of vacuum-evaporated Au-CdTe/CdS-TO heterojunction solar cells have been investigated. The CdCl2 dip followed by air annealing at 300 degrees C for 5 min improved the device efficiency significantly, resulting in decreased CdTe resistivity and enhanced grain size. The temperature-dependent current-voltage analysis indicated that above 280 K interface recombination dominates the current tr...
An on-die ultra-low voltage DC-DC step-up converter with voltage doubling LC-tank
Jayaweera, H. M. P. C.; Pathirana, W. P. M. R.; Muhtaroglu, Ali (IOP Publishing; 2016-12-01)
In this paper we report the design, characterization and verification of a novel on-die ultra-low voltage DC-DC converter circuit for energy harvester applications in 0.18 mu m complementary metal oxide semiconductor (CMOS) technology. The circuit self-starts, does not use off-chip components, and is thus suitable for use in highly integrated low cost systems. The first version of the design has a five-stage charge-pump stimulated by an oscillator with two center-tap inductors. It is validated on a test chi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Hatipoğlu, B. ÇETİN, and E. Yıldırım, “A novel zero-dead-volume sample loading interface for microfluidic devices: flexible hydraulic reservoir (FHR),”
JOURNAL OF MICROMECHANICS AND MICROENGINEERING
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41759.