Effective feature reduction for link prediction in location-based social networks

2019-10-01
Bayrak, Ahmet Engin
Polat, Faruk
In this study, we investigated feature-based approaches for improving the link prediction performance for location-based social networks (LBSNs) and analysed their performances. We developed new features based on time, common friend detail and place category information of check-in data in order to make use of information in the data which cannot be utilised by the existing features from the literature. We proposed a feature selection method to determine a feature subset that enhances the prediction performance with the removal of redundant features by clustering them. After clustering features, a genetic algorithm is used to determine the ones to select from each cluster. A non-monotonic and feasible feature selection is ensured by the proposed genetic algorithm. Results depict that both new features and the proposed feature selection method improved link prediction performance for LBSNs.