Simultaneous thermogravimetry-calorimetry study on the combustion of coal samples: Effect of heating rate

Combustion characteristics of two different coal samples were investigated using power compensating type differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG) at different heating rates (5, 10 and 15 degrees C/min). Differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG) curves revealed two main reaction regions at each heating rate studied. Reaction regions, peak and burn-out temperatures, weight loss and heat of reactions of the samples were determined. Kinetic parameters of the coal samples were also determined by different methods and it was observed that the activation energy values of the coal samples were in the range of 27.2-76.2 kj/mol for different reaction regions studied.


Application of TGA-MS technique for oil shale characterization and kinetics
Kök, Mustafa Verşan; Varfolomeev, Mikhail A.; Nurgaliev, Danis K.; Kandasamy, Jayaraman (2022-03-01)
Thermal characteristics and model free kinetics of four different oil shale samples were studied using simultaneous thermogravimetry-mass spectrometer (TGA-MS) analysis performed at three different heating rates and under air atmosphere. All the reaction regions and corresponding peak temperatures, mass loss, and the residue of oil shale samples were determined. Meanwhile, the main volatile products, primary alcohols, and aromatic compounds as products of oil shale combustion, were determined on the basis o...
Thermal characterization of different origin class-G cements
Kök, Mustafa Verşan (2014-02-01)
In this study, thermal characteristics and kinetics of three different origin class-G cements (Mix, Bolu, and Nuh) were studied using thermogravimetry (TG/DTG) and differential scanning calorimeter (DSC). In DSC curves at different heating rates a number of peaks were observed consistently in different temperature intervals. TG/DTG is used to identify the detected phases and the corresponding mass loss. In the dehydration kinetic study of the different origin class-G cement samples, three different methods ...
An investigation into the thermal behavior of coals
Kök, Mustafa Verşan (2002-10-01)
The thermal behavior of 4 coal samples was investigated using simultaneous thermogravimetry (TG/DTG) and differential thermal analysis (DTA) methods. Upon heating the coals in an inert atmosphere up to 800degreesC, 31.44-43.82% weight loss occurs. The 2 temperature regions of increased chemical reactivity are evident in the coal samples studied Two different models determined kinetic analysis of the samples, and the results are discussed.
Catalytic effects of metallic additives on the combustion properties of crude oils by thermal analysis techniques
Kök, Mustafa Verşan (2001-08-20)
Differential scanning calorimetry (DSC) was applied to crude oil combustion in the presence and absence of metal chlorides. It was observed that in the presence of smaller ratios of metallic additives, the surface reactions were predominant and the catalyst did not affect the reactions much. Three reaction regions were identified as low temperature oxidation (LTO), middle temperature oxidation (MTO) and high temperature oxidation (HTO). Kinetic parameters of the reaction regions were determined with two dif...
Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter
Kök, Mustafa Verşan (2012-04-01)
The objective of this research was to investigate thermal behavior and kinetics of different origin crude oils in limestone matrix by differential scanning calorimeter (DSC) at low heating rates. In DSC experiments, three distinct reaction regions were identified in all of the crude oil + limestone mixtures known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO) respectively. Kinetic analysis of the crude oil samples was determined by different models known as AST...
Citation Formats
M. V. Kök, “Simultaneous thermogravimetry-calorimetry study on the combustion of coal samples: Effect of heating rate,” ENERGY CONVERSION AND MANAGEMENT, pp. 40–44, 2012, Accessed: 00, 2020. [Online]. Available: