A novel approach for robot homing

Koku, Ahmet Buğra
Although metric navigation techniques have been widely adapted in robot navigation, some powerful qualitative navigation methods have been proposed to achieve navigation. These methods do not require strict metric measures or presence of metric maps. This paper briefly introduces such qualitative navigation techniques and introduces a novel approach for qualitative robot navigation. Comparison of this method to some existing ones is given and performance analysis is presented. This technique requires less amount of information and its performance is comparable to other similar methods.


Terrain referenced navigation of an aircraft using particle filter
Turan, Burak; Kutay, Ali Türker; Department of Aerospace Engineering (2017)
The need for Terrain Referenced Navigation (TRN) arises when Global Navigation Satellite System (GNSS) signals are unavailable. In recent years, research on the application of TRN to aerial and underwater vehicles has been increased rapidly with the developments in the accuracy of digital terrain elevation database (DTED). Since the land and sea floor profiles are inherently nonlinear, TRN becomes a nonlinear estimation problem. Because of the highly nonlinear and non-Gaussian problem, linear or linearized ...
A Test Setup for Evaluating Long-term Measurement Characteristics of Optical Mouse Sensors
Kanburoglu, Furkan A; Dölen, Melik; Koku, Ahmet Buğra (2007-06-01)
Due to significant advancements in optical navigation technology, optical mouse sensors (OMS) are increasingly employed as low-cost motion sensora in personal computing and robot navigation. This paper proposes a new test bed to study the long-term measurement characteristics of emerging OMS devices. With the utilization of this set-up, the attributes of a high-resolution OMS (Agilent ADNS-2051) are investigated under various critical operating conditions like changing surface velocity and the pattern. The ...
Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network
Kaygisiz, Burak H.; Erkmen, Aydan Müşerref; Erkmen, İsmet (Springer Science and Business Media LLC, 2007-06-01)
Integrated global positioning system and inertial navigation system (GPS/INS) have been extensively employed for navigation purposes. However, low-grade GPS/INS systems generate erroneous navigation solutions in the absence of GPS signals and drift very fast. We propose in this paper a novel method to integrate a low-grade GPS/INS with an artificial neural network (ANN) structure. Our method is based on updating the INS in a Kalman filter structure using ANN during GPS outages. This study focuses on the des...
Toward egocentric navigation
Kawamura, Kazuhiko; Koku, Ahmet Buğra; Wilkes, Mitchell; Peters, Richard Alan; Sekmen, Ali (ACTA Press, 2002-11-01)
A method for egocentric navigation of mobile robots is described. Each robot has a local short-term memory structure called the Sensory Egosphere (SES), which is indexed by azimuth, elevation, and time. Directional sensory processing modules write information on the SES at the location corresponding to the source direction. Each robot has a partial map of its operational area that it has received a priori. The map is populated with landmarks and is not necessarily metrically accurate. Each robot is given a ...
A comparative study on tightly coupled visual aided inertial navigation systems for unmanned aerial vehicles
İnce, Talha; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2018)
An Inertial Navigation System (INS) is a combination of hardware (accelerometers and gyroscopes) and algorithms to calculate the position, orientation and velocity of a mobile platform. Because of the need to integrate the measurements over time, INS is subjected to cumulative error characteristics, hence cannot provide an accurate navigation solution over long durations. Global Positioning System (GPS) is often used for long time-long distance problems aiding INS. GPS relies on external signals received fr...
Citation Formats
A. B. Koku and D. M. WİLKES, “A novel approach for robot homing,” 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41962.