Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging
Date
2018-12-01
Author
Arvin, Farshad
Watson, Simon
Turgut, Ali Emre
Espinosa, Jose
Krajnik, Tomas
Lennox, Barry
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
0
downloads
Cite This
Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this paper, a low-cost on-the-fly wireless charging system, composed of several charging cells, is proposed for use in swarm robotic research studies. To determine the system's ability to support perpetual swarm operation, a probabilistic model that takes into account the swarm size, robot behaviour and charging area configuration, is outlined. Based on the model, a prototype system with 12 charging cells and a small mobile robot, Mona, was developed. A series of long-term experiments with different arenas and behavioural configurations indicated the model's accuracy and demonstrated the system's ability to support perpetual operation of multi-robotic system.
Subject Keywords
Swarm robotics
,
Wireless charging
,
Long-term autonomy
,
Perpetual swarm
URI
https://hdl.handle.net/11511/42019
Journal
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
DOI
https://doi.org/10.1007/s10846-017-0673-8
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Lifelong learning and personalization in long-term human-robot interaction (LEAP-HRI)
Irfan, Bahar; Ramachandran, Aditi; Spaulding, Samuel; Kalkan, Sinan; Parisi, German I.; Gunes, Hatice (2021-03-08)
While most of the research in Human-Robot Interaction (HRI) focuses on short-term interactions, long-term interactions require bolder developments and a substantial amount of resources, especially if the robots are deployed in the wild. Robots need to incrementally learn new concepts or abilities in a lifelong fashion to adapt their behaviors within new situations and personalize their interactions with users to maintain their interest and engagement. The "Lifelong Learning and Personalization in Long-Term ...
PФSS: An Open-source Experimental Setup for Continuous Real-world Implementation of Swarm Robotic Systems
Turgut, Ali Emre; Krajnik, Tomas (2018-10-19)
Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the real-world application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardw...
GESwarm Grammatical Evolution for the Automatic Synthesis of Collective Behaviors in Swarm Robotics
Ferrante, Eliseo; Turgut, Ali Emre; DuenezGuzman, Edgar; Wenseleers, Tom (2013-07-10)
In this paper we propose GESwarm, a novel tool that can automatically synthesize collective behaviors for swarms of autonomous robots through evolutionary robotics. Evolutionary robotics typically relies on artificial evolution for tuning the weights of an artificial neural network that is then used as individual behavior representation. The main caveat of neural networks is that they are very difficult to reverse engineer, meaning that once a suitable solution is found, it is very difficult to analyze, to ...
Power-Law Distribution of Long-Term Experimental Data in Swarm Robotics
Arvin, Farshad; Attar, Abdolrahman; Turgut, Ali Emre; Yue, Shigang (2015-06-02)
Bio-inspired aggregation is one of the most fundamental behaviours that has been studied in swarm robotic for more than two decades. Biology revealed that the environmental characteristics are very important factors in aggregation of social insects and other animals. In this paper, we study the effects of different environmental factors such as size and texture of aggregation cues using real robots. In addition, we propose a mathematical model to predict the behaviour of the aggregation during an experiment.
Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control
Pouya, Soha; Aydın Göl, Ebru; Moeckel, Rico; Ijspeert, Auke Jan (2011-01-01)
This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Arvin, S. Watson, A. E. Turgut, J. Espinosa, T. Krajnik, and B. Lennox, “Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging,”
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
, pp. 395–412, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42019.