PФSS: An Open-source Experimental Setup for Continuous Real-world Implementation of Swarm Robotic Systems

2018-10-19
Turgut, Ali Emre
Krajnik, Tomas
Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the real-world application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardware micro-robot capable of local and global communication, (ii) commercially-available wireless charging modules which provide virtually unlimited robot operation time, (iii) open-source marker-based robot tracking system for automated experiment evaluation, (iv) and a LCD display or a light projector to simulate environmental cues and pheromone communication. To demonstrate the versatility of the system, we present several scenarios, where our system was used.
Modeling and Simulation for Autonomous Systems Conference ( 17 - 19 Ekim 2018)

Suggestions

P Phi SS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios
Arvin, Farshad; Krajnik, Tomas; Turgut, Ali Emre (2019-01-01)
Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the realworld application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardwa...
Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging
Arvin, Farshad; Watson, Simon; Turgut, Ali Emre; Espinosa, Jose; Krajnik, Tomas; Lennox, Barry (2018-12-01)
Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this p...
Design of a low-costs warm robotic system for flocking
Demir, Çağrı Ata; Turgut, Ali Emre; Department of Mechanical Engineering (2019)
Swarm robotics is an approach to the coordination of large numbers of robots. The main motivation of this thesis is to study a robotic system designed to do flocking both indoors and outdoors. A walking robot is designed parallel to this purpose. In the first part of thesis, a leg is designed to minimize the displacement of center of mass of robot in vertical axis to eliminate mechanical noise. Mechanism analysis and Matlab optimization tools are utilized in this process. Then, electronic components of robo...
GESwarm Grammatical Evolution for the Automatic Synthesis of Collective Behaviors in Swarm Robotics
Ferrante, Eliseo; Turgut, Ali Emre; DuenezGuzman, Edgar; Wenseleers, Tom (2013-07-10)
In this paper we propose GESwarm, a novel tool that can automatically synthesize collective behaviors for swarms of autonomous robots through evolutionary robotics. Evolutionary robotics typically relies on artificial evolution for tuning the weights of an artificial neural network that is then used as individual behavior representation. The main caveat of neural networks is that they are very difficult to reverse engineer, meaning that once a suitable solution is found, it is very difficult to analyze, to ...
Power-Law Distribution of Long-Term Experimental Data in Swarm Robotics
Arvin, Farshad; Attar, Abdolrahman; Turgut, Ali Emre; Yue, Shigang (2015-06-02)
Bio-inspired aggregation is one of the most fundamental behaviours that has been studied in swarm robotic for more than two decades. Biology revealed that the environmental characteristics are very important factors in aggregation of social insects and other animals. In this paper, we study the effects of different environmental factors such as size and texture of aggregation cues using real robots. In addition, we propose a mathematical model to predict the behaviour of the aggregation during an experiment.
Citation Formats
A. E. Turgut and T. Krajnik, “PФSS: An Open-source Experimental Setup for Continuous Real-world Implementation of Swarm Robotic Systems,” 2018, p. 351, Accessed: 00, 2021. [Online]. Available: https://www.mscoe.org/event/mesas-2018/.