Seismic Performance Assessment of Unreinforced Masonry Buildings with a Hybrid Modeling Approach

Aldemir, Alper
Erberik, Murat Altuğ
Demirel, I. Ozan
Sucuoğlu, Haluk
This study proposes a hybrid modeling approach for the seismic performance assessment of unreinforced masonry buildings. The method combines finite-element and equivalent-frame approaches such that more powerful features of each approach are utilized. The finite-element approach is used to model the masonry components of different geometrical and material characteristics with a high level of accuracy. Then this numerically simulated database is used in the analytical modeling of masonry buildings with equivalent beams and columns instead of spandrels and piers. Thus it becomes possible to model a masonry building as a frame structure that can simply be analyzed in order to capture the global behavior. The method has been verified by comparing the analytical results with the previous experimental findings. The last part of the study is devoted to the implementation of the method to an existing masonry building that was damaged during a severe earthquake. [DOT: 10.1193/1.4000102]


Experimental evaluation of geomembrane/geotextile interface as base isolating system
Kalpakci, V.; Bonab, A. T.; Özkan, M. Yener; Gülerce, Zeynep (Thomas Telford Ltd., 2018-02-01)
The objective of this study is to evaluate the effect of the geomembrane/geotextile interface on the seismic response of small-to-moderate height structures. Three building models with first-mode natural frequencies changing between 2-4 Hz (representing two, three and four storey structures) were tested with and without the addition of geomembrane/geotextile interface using the shaking table test setup by employing harmonic and modified/ scaled ground motions. Experimental results showed that the geomembran...
Seismic Risk Prioritization and Retrofit Cost Evaluation of Code-Deficient RC Public Buildings in Turkey
Sucuoğlu, Haluk; Yakut, Ahmet (SAGE Publications, 2015-02-01)
A risk prioritization procedure is developed for deficient concrete public buildings within the scope of a seismic risk reduction program. The main purpose is identifying public buildings with high damage risk in a region for efficient retrofit investments. Regularity of structural systems and repeatability of deficiencies in public buildings provide opportunities for developing simple and reliable assessment procedures. The proposed procedure is based on calculating a risk index from the comparison of late...
Seismic Performance of a Deficient Reinforced Concrete Test Frame with Infill Walls
Kurt, Efe G.; Binici, Barış; Kurç, Özgür; Canbay, Erdem; Akpinar, Akpinar; Ozcebe, Guney (SAGE Publications, 2011-08-01)
A two-story, three-bay RC frame with code incompliant seismic design and detailing is tested using continuous pseudodynamic test method for three scale levels of Duzce ground motion. The ground motion produced minimum, significant, and severe damage states on the test structure. Diagonal cracking of the infill wall, column damage in the form of cover spalling and rebar buckling, and complete disintegration of the infill wall were the important observed damage events for the three scale levels, respectively....
Ground Motion Prediction Equations for the Vertical Ground Motion Component Based on the NGA-W2 Database
Gülerce, Zeynep; Abrahamson, Norman A.; Silva, Walter J. (SAGE Publications, 2017-05-01)
Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0-8.0, distances of 0-300 km, and spectral periods of 0-10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and ...
Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics
Dicleli, Murat (SAGE Publications, 2006-11-01)
This paper investigates the performance of seismic-Isolated bridges (SIBs) subjected to near-fault (NF) earthquakes with forward rupture directivity effect (FRDE) in relation to the isolator, substructure, and NF earthquake properties, and examines some critical design clauses in AASHTO's Guide Specifications for Seismic Isolation Design. It is found that the SIB response is a function of the number of velocity pulses, magnitude of the NF ground motion, and distance from the fault. Particularly, a reasonabl...
Citation Formats
A. Aldemir, M. A. Erberik, I. O. Demirel, and H. Sucuoğlu, “Seismic Performance Assessment of Unreinforced Masonry Buildings with a Hybrid Modeling Approach,” EARTHQUAKE SPECTRA, pp. 33–57, 2013, Accessed: 00, 2020. [Online]. Available: