Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics
Date
2006-11-01
Author
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
This paper investigates the performance of seismic-Isolated bridges (SIBs) subjected to near-fault (NF) earthquakes with forward rupture directivity effect (FRDE) in relation to the isolator, substructure, and NF earthquake properties, and examines some critical design clauses in AASHTO's Guide Specifications for Seismic Isolation Design. It is found that the SIB response is a function of the number of velocity pulses, magnitude of the NF ground motion, and distance from the fault. Particularly, a reasonable estimation of the expected magnitude of the NF ground motion according to the characteristics of the bridge site is crucial for a correct design of the SIB. It is also found that the characteristic strength and post-elastic stiffness of the isolator may be chosen based on the characteristics of the NF earthquake. Furthermore, some of the AASHTO clauses are found to be not applicable to SIBs subjected to NF ground motions with FRDE.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Geophysics
URI
https://hdl.handle.net/11511/38024
Journal
EARTHQUAKE SPECTRA
DOI
https://doi.org/10.1193/1.2359715
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Ground Motion Prediction Equations for the Vertical Ground Motion Component Based on the NGA-W2 Database
Gülerce, Zeynep; Abrahamson, Norman A.; Silva, Walter J. (SAGE Publications, 2017-05-01)
Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0-8.0, distances of 0-300 km, and spectral periods of 0-10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and ...
Empirical attenuation equations for vertical ground motion in Turkey
Kalkan, E; Gulkan, P (SAGE Publications, 2004-08-01)
In the aftermath of two destructive urban earthquakes in 1999 in Turkey, empirical models of strong motion attenuation relationships that have been previously developed for North American and European earthquakes have been utilized in a number of national seismic hazard studies.. However, comparison of empirical evidence and estimates present significant differences. For that reason, a data set created from a suite of 100 vertical strong ground motion records from 47 national earthquakes that occurred betwe...
Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges
Dicleli, Murat (Wiley, 2006-02-01)
This paper presents the effect of isolator and substructure properties as well as the frequency characteristics and intensity of the ground motion on the performance of seismic-isolated bridges (SIBs) and examines some critical design clauses in the AASHTO Guide Specification for Seismic Isolation Design. For this purpose, a parametric study, involving more than 800 non-linear time history analyses of simplified structural models representative of typical SIBs, is conducted. The results from the parametric ...
Seismic Performance Assessment of Unreinforced Masonry Buildings with a Hybrid Modeling Approach
Aldemir, Alper; Erberik, Murat Altuğ; Demirel, I. Ozan; Sucuoğlu, Haluk (SAGE Publications, 2013-02-01)
This study proposes a hybrid modeling approach for the seismic performance assessment of unreinforced masonry buildings. The method combines finite-element and equivalent-frame approaches such that more powerful features of each approach are utilized. The finite-element approach is used to model the masonry components of different geometrical and material characteristics with a high level of accuracy. Then this numerically simulated database is used in the analytical modeling of masonry buildings with equiv...
Evaluation of Seismic Response Factors for Eccentrically Braced Frames Using FEMA P695 Methodology
KUŞYILMAZ, Ahmet; Topkaya, Cem (SAGE Publications, 2016-02-01)
This paper reports details of a numerical study undertaken to evaluate seismic response factors for steel eccentrically braced frames (EBFs) using the FEMA P695 methodology. Six archetypes were designed by making use of the current U.S. specifications, and their behavior was assessed by making use of nonsimulated collapse models. Results indicate that the current values of response factors result in designs with higher collapse probabilities than expected. Two modifications were developed to bring the colla...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics,”
EARTHQUAKE SPECTRA
, pp. 887–907, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38024.