Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Fundamental periods of steel eccentrically braced frames
Date
2015-02-10
Author
Kusyilmaz, Ahmet
Topkaya, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
This paper describes formulation of a hand method that can be used to estimate the computed fundamental periods of vibration of building structures in general and steel eccentrically braced frames (EBFs) in particular. The developed method uses the Rayleigh's method as a basis and utilizes the roof drift ratio (RDR) under seismic forces as a parameter. To obtain RDR, more than 4000 EBFs were designed by considering the seismic hazard, number of stories, braced bay width and link length to bay width ratio as prime variables. A model was developed to estimate RDR, which depends on the rigid plastic deformation mechanism for a typical EBF. The method was verified using design data produced as a part of this work as well as data published in literature. The verifications indicate that the proposed formulation is capable of providing acceptable estimates of the computed period. When compared with existing empirical period-height relationships, the proposed formulation offers closer estimates with reduced scatter. The method was further refined to derive new period-height relationships for two different seismicity regions. The accuracy of the relationship for high seismic regions was verified using measured periods of EBF buildings. Copyright (c) 2014 John Wiley & Sons, Ltd.
Subject Keywords
Eccentrically braced frame
,
Steel
,
Fundamental period
,
Seismic
URI
https://hdl.handle.net/11511/42185
Journal
STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS
DOI
https://doi.org/10.1002/tal.1157
Collections
Department of Civil Engineering, Article