Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Flutter qualification of transport aircraft with store suspension
Date
2004-01-01
Author
Kayran, Altan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
The methodology backed by relevant analysis results, flutter flight test (FFT) results, and their interpretation is presented for the flutter qualification of a transport aircraft with wing mounted external store suspension. Before the flight tests, extensive flutter analyses are performed by MSC/Nastran for different weight and CG configurations to reduce the number of costly FFTs based on the results of flutter analysis and decide on the aircraft test configurations. Analysis results and test results indicate that although the flutter speeds of the modified aircraft are lowered compared to the basic aircraft, the overall damping of the wing vibration modes stay above the values required by the flutter regulation MIL-A-8870C.
Subject Keywords
Air safety
,
Flight operations
,
Aerospace transport
,
Aeroplanes
,
Tests and testing
URI
https://hdl.handle.net/11511/42204
Journal
AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
DOI
https://doi.org/10.1108/00022660410514973
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Flight flutter testing and aeroelastic stability of aircraft
Kayran, Altan (2007-01-01)
Purpose - To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.
Flight flutter testing and aeroelastic stability of aircraft
Kayran, Altan (2007-01-01)
Purpose - This paper sets out to provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.
Aerodynamic modeling and parameter estimation of a quadrotor helicopter
Kaya, Derya; Kutay, Ali Türker (2014-01-01)
This study focuses on aerodynamic modeling of a quadrotor helicopter and the estimation of the model parameters in wind tunnel tests for hover, vertical climb, and forward flight conditions. The motion of a quadrotor is mainly affected by the aerodynamic forces and moments generated by rotors. Accurate calculation of rotor loads is essential for high fidelity simulation of a quadrotor. Momentum and blade element theories are used to obtain expressions for rotor forces and moments for a traveling vehicle. Th...
Investigation of rotor wake interactions in helicopters using 3d unsteady free vortex wake methodology
Yemenici, Öznur; Uzol, Oğuz; Department of Aerospace Engineering (2010)
This thesis focuses on developing and examining the capabilities of a new in-house aerodynamic analysis tool, AeroSIM+, and investigating rotor-rotor aerodynamic interactions for two helicopters, one behind the other in forward flight. AeroSIM+ is a 3-D unsteady vortex panel method potential flow solver based on a free vortex wake methodology. Validation of the results with the experimental data is performed using the Caradonna-Tung hovering rotor test case. AeroSIM+ code is improved for forward flight cond...
Adaptive controller applications for rotary wing aircraft models of varying simulation fidelity
Tarımcı, Onur; Yavrucuk, İlkay; Department of Aerospace Engineering (2009)
This thesis concerns the design, analysis and testing of adaptive controllers for rotary wing aircraft, in particular helicopters. A non-linear helicopter model is developed and validated by trim and dynamic response analyses. A inner-outer loop cascade controller is designed with a trajectory generator in the most outer layer and an adaptive neural network controller is implemented to the inner loop. Controller is then challenged to carry out complex maneuvers autonomously under turbulence. Finally, the ce...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Kayran, “Flutter qualification of transport aircraft with store suspension,”
AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY
, pp. 19–28, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42204.