Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Frost Susceptibility Properties of Soma-B Fly Ash
Date
1997-04-01
Author
Çokça, Erdal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
0
downloads
Cite This
This paper assesses the effect of freeze-thaw properties of compacted fly ash specimens likely to affect its use as fill material, on the basis of laboratory investigations conducted on Soma-B Thermal Power plant ashes in western Turkey. Test specimens were subjected to compaction. Changes in strength with curing time and freeze-thaw cycles are measured using unconfined compression tests, and increases in strength with curing time and the number of freeze-thaw cycles were observed. The findings suggest that compacted Soma-B fly ash could serve as fill material, particularly over weak subgrades with no negative environmental effects, provided that the degree of saturation of the compacted fly ash embankment is at a specific value.
Subject Keywords
Energy and fuels
,
Engineering, civil
URI
https://hdl.handle.net/11511/42866
Journal
Journal Of Energy Engineering-Asce
DOI
https://doi.org/10.1061/(asce)0733-9402(1997)123:1(1)
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Microwave heating of coal for enhanced magnetic removal of pyrite
Uslu, T; Atalay, U (Elsevier BV, 2004-01-15)
Amenability of Askale coal to desulfinization by magnetic separation following microwave heating was investigated. The coal was subjected to magnetic separation at 2 T following the treatment in a microwave oven at 850-W power and 2.45-GHz frequency. The increase in magnetic property by microwave heating at 850 W and 2.45 GHz was not sufficient to enhance the removal of considerable amount pyritic sulfur from the coal by magnetic separation at 2 T. Pyritic sulfur content was reduced by 37.46%. With the addi...
Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash
Sahmaran, Mustafa; Yaman, İsmail Özgür (Elsevier BV, 2007-01-01)
This paper presents a study on the fresh and mechanical properties of a fiber reinforced self-compacting concrete incorporating high-volume fly ash that does not meet the fineness requirements of ASTM C 618. A polycarboxylic-based superplasticizer was used in combination with a viscosity modifying admixture. In mixtures containing fly ash, 50% of cement by weight was replaced with fly ash. Two different types of steel fibers were used in combination, keeping the total fiber content constant at 60 kg/m(3). S...
Comparison of Fine Ash Emissions Generated from Biomass and Coal Combustion and Valuation of Predictive Furnace Deposition Indices: A Review
Ruscio, Amanda; Kazanç Özerinç, Feyza; Levendis, Yiannis A. (American Society of Civil Engineers (ASCE), 2016-06-01)
To address important ash-related issues associated with burning solid biomass fuels for power generation, this paper reviews results of studies performed at the Northeastern University (NU) Combustion and Air Pollution laboratory and elsewhere under well-characterized conditions. It compares the physical and chemical characteristics of fine ash emissions generated from the combustion of pulverized biomasses to those from pulverized coals, since biomass is considered as a substitute fuel for coal in power ge...
Asphaltene deposition during steam-assisted gravity drainage: Effect of non-condensable gases
Canbolat, S; Akın, Serhat; Kovscek, AR (Informa UK Limited, 2006-01-01)
Asphaltene deposition was investigated during laboratory-scale steam-assisted gravity drainage (SAGD) experiments to probe in situ upgrading of a heavy oil. Tests were conducted with and without the addition of non-condensable gases (carbon dioxide or n-butane) to the steam. The apparatus was a three-dimensional scaled physical model packed with crushed limestone saturated with 12.4 degrees API heavy-crude oil. Temperature, pressure, and production data, as well as the asphaltene content of the produced oil...
ELECTROKINETICS OF OXIDIZED COAL
SARIKAYA, M; OZBAYOGLU, G (Elsevier BV; 1990-01-01)
Electrokinetic measurements were carried out in order to determine the properties of oxidized coal surfaces over a wide pH range both in the presence and absence of various metal ions and flotation collectors. It was found that polyvalent cations, such as Fe++, Fe+++ and Al+++ decreased the zeta potential to zero and then reversed the charge. In the presence of cationic collectors, the negative value of zeta potential of oxidized coal was driven positive, below 9.3 to 10.9 depending on the type and concentr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Çokça, “Frost Susceptibility Properties of Soma-B Fly Ash,”
Journal Of Energy Engineering-Asce
, pp. 1–10, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42866.