Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An amperometric acetylcholine biosensor based on a conducting polymer
Date
2013-08-01
Author
Kanik, Fulya Ekiz
Kolb, Marit
TİMUR, SUNA
Bahadir, Muefit
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
An amperometric acetylcholine biosensor was prepared by the generation of the conducting polymer poly(4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine) (poly(SNS-NH2)) on graphite electrodes. For pesticide detection, the enzymes acetylcholinesterase (AChE) and choline oxidase (ChO) were co-immobilized onto the conducting polymer poly(SNS-NH2) films using covalent binding technique. Electrochemical polymerization was carried out using a three-electrode cell configuration via cyclic voltammetry. Characterization of resulting acetylcholine biosensor was done in terms of optimum pH, enzyme loading, range of linear response and shelf-life. Linear range was 0.12-10 mM and shelf-life 4 weeks. Sensitivity was calculated as 2.19 mu A mM(-1) cm(-2). The designed biosensor was tested for the determination of paraoxon-ethyl in spiked tap water samples. The results were compared with a conventional quantification method using HPLC-DAD. Linear correlation of the quantification results with both methods (R-2=0.998) was obtained.
Subject Keywords
Biochemistry
,
Molecular Biology
,
Structural Biology
,
General Medicine
URI
https://hdl.handle.net/11511/43153
Journal
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
DOI
https://doi.org/10.1016/j.ijbiomac.2013.04.028
Collections
Department of Chemistry, Article