Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides
Date
2014-12-15
Author
Kesik, Melis
Kanik, Fulya Ekiz
Turan, Janset
Kolb, Marit
TİMUR, SUNA
Bahadir, Muefit
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
209
views
0
downloads
Cite This
A novel amperometric biosensor based on a conducting polymer using multi walled carbon nanotube modified electrode was developed for detection of organophosphorus pesticides. Acetylcholinesterase (AChE) was successfully immobilized by covalent linkage on the modified graphite electrode. Carbon nanotubes were functionalized by electrochemical treatment. A conducting polymer; poly(4-( 2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine) (poly( SNS-NH2)) was synthesized via electropolymerization to examine its matrix properties for biomolecule immobilization. This strategy enhanced electron transfer rate at a lower potential (+100 mV vs. Ag reference) and catalyzed electrochemical oxidation of acetylthiocholine effectively. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements and electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) techniques were used to monitor changes in surface morphologies and electrochemical characterizations. The proposed biosensor design offered a fast response time (6 s), a wide linear range (0.05 mM and 8.00 mM) and a low detection limit (0.09 mM) with a high sensitivity (24.16 mu AmM-1 cm(-2)) for acetylthiocholine. The inhibition responses of paraoxon, parathion and chlorfenvinphos on the enzymatic activity of AChE were detected. The fabricated biosensor was tested for the detection of pesticides in fortified tap water samples. The results were found to be in good agreement with the ones determined by HPLC/DAD technique.
Subject Keywords
Amperometry
,
Pesticides
,
Biosensor
,
Acetylcholinesterase
URI
https://hdl.handle.net/11511/41187
Journal
SENSORS AND ACTUATORS B-CHEMICAL
DOI
https://doi.org/10.1016/j.snb.2014.08.058
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
A Novel Amperometric Glutamate Biosensor Based on Glutamate Oxidase Adsorbed on Silicalite
Soldatkina, O. V.; Soldatkin, O. O.; Kasap, B. Ozansoy; Kucherenko, D. Yu.; Kucherenko, I. S.; Akata Kurç, Burcu; Dzyadevych, S. V. (2017-04-07)
In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode (d = 0.4 mm) was used as the amperometric sensor. The procedure of biosensor preparation was optimized. The main parameters of modifying amperometric transducers with a silicalite layer were determined along with the procedure of GlOx adsorption on this layer. The biosensors based on GlOx adsorbed...
A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer
GOKOGLAN, Tugba Ceren; SOYLEMEZ, Saniye; KESİK, Melis; DOGRU, Itir Bakis; TUREL, Onur; YÜKSEL, Recep; Ünalan, Hüsnü Emrah; Toppare, Levent Kamil (2017-04-01)
A novel flexible glucose biosensor using vertically aligned carbon nanotubes (VACNT) and a conjugated polymer (CP) was fabricated. A scaffold based on VACNT grown on aluminum foil (VACNT-Al foil) with poly (9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl)-end capped with 2,5-diphenyl-1,2,4-oxadiazole (PFLO) was used as the immobilization matrix for the glucose biosensor. Glucose oxidase (GOx) was immobilized on a modified indium tin oxide (ITO) coated polyethylene terephthalate (PET) electrode surface. The biosens...
An amperometric acetylcholine biosensor based on a conducting polymer
Kanik, Fulya Ekiz; Kolb, Marit; TİMUR, SUNA; Bahadir, Muefit; Toppare, Levent Kamil (Elsevier BV, 2013-08-01)
An amperometric acetylcholine biosensor was prepared by the generation of the conducting polymer poly(4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine) (poly(SNS-NH2)) on graphite electrodes. For pesticide detection, the enzymes acetylcholinesterase (AChE) and choline oxidase (ChO) were co-immobilized onto the conducting polymer poly(SNS-NH2) films using covalent binding technique. Electrochemical polymerization was carried out using a three-electrode cell configuration via cyclic voltammetry. Characteri...
A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides
Cancar, Hurija Dzudzevic; SÖYLEMEZ, Saniye; AKPINAR, Yeliz; KESİK, Melis; Goker, SEZA; Günbaş, Emrullah Görkem; Volkan, Mürvet; Toppare, Levent Kamil (American Chemical Society (ACS), 2016-03-30)
To construct a sensing interface, in the present work, a conjugated polymer and core shell magnetic nano particle containing biosensor was constructed for the pesticide analysis. The monomer 4,7-di(furan-2-yl)benzo [c] [1,2,5]-thiadiazole (FBThF) and core shell magnetic nanoparticles were designed and synthesized for fabrication of the biosensing device. The magnetic nanoparticles were first treated with silica and then modified using carboxyl groups, which enabled binding of the biomolecules covalently. Fo...
A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate
Wei, Di; Ünalan, Hüsnü Emrah; Han, Dongxue; Zhang, Qixian; Niu, Li; Amaratunga, Gehan; Ryhanen, Tapani (2008-10-22)
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kesik et al., “An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides,”
SENSORS AND ACTUATORS B-CHEMICAL
, pp. 39–49, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41187.