Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Compression of solid and annular circular discs bonded to rigid surfaces
Date
2008-08-01
Author
Pinarbasi, Seval
Mengi, Yalcin
Akyüz, Uğurhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
16
views
0
downloads
Although it is noted in the literature that the presence of a central hole in an elastic layer bonded to rigid surfaces can cause significant drop in its compression modulus not much, attention is given for investigating thoroughly and in detail the influence of the hole oil the layer behavior. This paper presents analytical solutions to the problem ofthe uniform compression of bonded hollow circular elastic layers, which includes solid circular layers as a special case as the radius of hollow section vanishes. The closed-form expressions derived in this study are advanced in the sense that three of the commonly used assumptions in the analysis of bonded elastic layers are eliminated: (i) the incompressibility assumption, (ii) the "pressure" assumption and (iii) the assumption that plane sections remain plarreafter deformation. Through the use of the analytical solutions derived in the study, the compressive behavior of bonded circular discs is studied. Particular emphasis is given to the investigation of the effects of the existence of a central hole on the compression modulus, stress distributions and maximum stresses/s trains in view of three key parameters: radius ratio of the hole, aspect ratio of the disc and Poisson's ratio of the disc material.
Subject Keywords
Mechanical Engineering
,
Modelling and Simulation
,
General Materials Science
,
Mechanics of Materials
,
Applied Mathematics
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/43182
Journal
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
DOI
https://doi.org/10.1016/j.ijsolstr.2008.03.026
Collections
Department of Civil Engineering, Article