Elastic layers bonded to flexible reinforcements

Pinarbasi, Seval
Mengi, Yalcin
Elastic layers bonded to reinforcing sheets are widely used in many engineering applications. While in most of the earlier applications, these layers are reinforced using steel plates, recent studies propose to replace "rigid" steel reinforcement with "flexible" fiber reinforcement to reduce both the cost and weight of the units/systems. In this study, a new formulation is presented for the analysis of elastic layers bonded to flexible reinforcements under (i) uniform compression, (ii) pure bending and (iii) pure warping. This new formulation has some distinct advantages over the others in literature. Since the displacement boundary conditions are included in the formulation, there is no need to start the formulation with some assumptions (other than those imposed by the order of the theory) on stress and/or displacement distributions in the layer or with some limitations on geometrical and material properties. Thus, the solutions derived from this formulation are valid not only for "thin" layers of strictly or nearly incompressible materials but also for "thick" layers and/or compressible materials. After presenting the formulation in its most general form, with regard to the order of the theory and shape of the layer, its applications are demonstrated by solving the governing equations for bonded layers of infinite-strip shape using zeroth and/or first order theory. For each deformation mode, closed-form expressions are obtained for displacement/stress distributions and effective layer modulus. The effects of three key parameters: (i) shape factor of the layer, (ii) Poisson's ratio of the layer material and (iii) extensibility of the reinforcing sheets, on the layer behavior are also studied.


A new formulation for the analysis of elastic layers bonded to rigid surfaces
Pinarbasi, Seval; Akyüz, Uğurhan; Mengi, Yalcin (Elsevier BV, 2006-07-01)
Elastic layers bonded to rigid surfaces have widely been used in many engineering applications. It is commonly accepted that while the bonded surfaces slightly influence the shear behavior of the layer, they can cause drastic changes on its compressive and bending behavior. Most of the earlier studies on this subject have been based on assumed displacement fields with assumed stress distributions, which usually lead to "average" solutions. These assumptions have somehow hindered the comprehensive study of s...
Compression of solid and annular circular discs bonded to rigid surfaces
Pinarbasi, Seval; Mengi, Yalcin; Akyüz, Uğurhan (Elsevier BV, 2008-08-01)
Although it is noted in the literature that the presence of a central hole in an elastic layer bonded to rigid surfaces can cause significant drop in its compression modulus not much, attention is given for investigating thoroughly and in detail the influence of the hole oil the layer behavior. This paper presents analytical solutions to the problem ofthe uniform compression of bonded hollow circular elastic layers, which includes solid circular layers as a special case as the radius of hollow section vanis...
Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory
Miehe, Christian; Mendez Diez, Joel; Göktepe, Serdar; Schaenzel, Lisa Marie (Elsevier BV, 2011-06-15)
The paper outlines a constitutive model for finite thermo-visco-plastic behavior of amorphous glassy polymers and considers details of its numerical implementation. In contrast to existing kinematical approaches to finite plasticity of glassy polymers, the formulation applies a plastic metric theory based on an additive split of Lagrangian Hencky-type strains into elastic and plastic parts. The analogy between the proposed formulation in the logarithmic strain space and the geometrically linear theory of pl...
Irreversible thermodynamics of triple junctions during the intergranular void motion under the electromigration forces
Ogurtani, TO; Oren, EE (Elsevier BV, 2005-06-01)
A rigorous reformulation of internal entropy production and the rate of entropy flow is developed for multi-component systems consisting of heterophases, interfaces and/or surfaces. The result is a well-posed moving boundary value problem describing the dynamics of curved interfaces and surfaces associated with voids and/or cracks that are intersected by grain boundaries. Extensive computer simulations are performed for void configuration evolution during intergranular motion. In particular we simulate evol...
Finite Element Analysis of Laminated Beams Under Transverse Loading
WASTİ PAMUKSUZ, SYEDA NAZLI; Utku, Mehmet (Wiley, 2000-11-01)
Laminated beams fabricated from strips with intermediate adhesive bonding layers are frequently used. The evaluation of the shear and normal stresses in the adhesive layer along the length of the beam is important and both analytical as well as experimental investigations for these stresses have been previously documented. In the present paper, an attempt has been made to compare the analytical shear stress values in the adhesive layer obtained in previous analytical work with those obtained by modelling th...
Citation Formats
S. Pinarbasi and Y. Mengi, “Elastic layers bonded to flexible reinforcements,” INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, pp. 794–820, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65941.