Temperature-controlled combustion and kinetics of different rank coal samples

Differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG) has been used to obtain information on the temperature-controlled combustion characteristics of seventeen coals of different origin from Thrace basin of Turkey. Experiments were performed in air atmosphere up to 600degreesC at a heating rate of 10degrees min(-1). The DSC/TG curves clearly demonstrate distinct transitional stages in the entire coal samples studied. Reaction intervals, peak and burn-out temperatures of the coal samples are also determined. Two different kinetic methods known as, Arrhenius and Coats-Redfern, were used to analyze the kinetic data and the results are discussed.


Pyrolysis and Combustion Studies of Fossil Fuels by Thermal Analysis Methods Review
Kök, Mustafa Verşan (1995-02-01)
Instances where differential scanning calorimetry, thermogravimetry and differential thermal analysis have been applied to study the pyrolysis and combustion behaviour of fossil fuels (peat, lignite, bituminous coals, anthracite, oil shales, crude oils, lignite-oil mixtures, etc.) are reviewed. The literature survey showed that thermal methods were important not only theoretically but also from a practical point of view.
Thermal characterization of different origin class-G cements
Kök, Mustafa Verşan (2014-02-01)
In this study, thermal characteristics and kinetics of three different origin class-G cements (Mix, Bolu, and Nuh) were studied using thermogravimetry (TG/DTG) and differential scanning calorimeter (DSC). In DSC curves at different heating rates a number of peaks were observed consistently in different temperature intervals. TG/DTG is used to identify the detected phases and the corresponding mass loss. In the dehydration kinetic study of the different origin class-G cement samples, three different methods ...
Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter
Kök, Mustafa Verşan (2012-04-01)
The objective of this research was to investigate thermal behavior and kinetics of different origin crude oils in limestone matrix by differential scanning calorimeter (DSC) at low heating rates. In DSC experiments, three distinct reaction regions were identified in all of the crude oil + limestone mixtures known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO) respectively. Kinetic analysis of the crude oil samples was determined by different models known as AST...
Non-isothermal DSC and TG/DTG analysis of the combustion of silopi asphaltites
Kök, Mustafa Verşan (2007-06-01)
In this research, non-isothermal combustion and kinetics of Silopi (Turkey) asphaltite samples were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). A sample size of 10 mg, heating rates of 5, 10, 15 and 200C min(-1) were used in the temperature range of 20-600 degrees C, under air atmosphere. Two reaction regions were observed in DSC curves. The first region is due to the evaporation of moisture in asphaltite sample whereas, release of volatile matter and burning of ca...
Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS
Jayaraman, Kandasamy; Kök, Mustafa Verşan; Gokalp, Iskender (2017-10-01)
In this research, thermogravimetric and mass-spectrometric (TG-MS) analysis and kinetics of different sized (60 mu m,800 mu m, and 3 mm) Saray (Turkish origin) coal is examined at various combustion temperature ranges. Experiments are performed at the heating rate of 40 degrees C/min in an argon atmosphere up to combustion/gasification temperatures (850-1150 degrees C), which, is close to the conditions of fluidized bed systems for high ash coal applications. The combustion tests are performed at isothermal...
Citation Formats
M. V. Kök, “Temperature-controlled combustion and kinetics of different rank coal samples,” JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, pp. 175–180, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43288.