Investigation of tensile strength of hydroxyapatite with various porosities by diametral strength test

It is appropriate to administer the diametral test to biomedical materials used in dental applications because stresses formed on dental implants are similar to those that formed in this test. To show this similarity, an experimental study of diametral strength testing of hydroxyapatite was performed. The influence of porosity on hydroxyapatite was investigated experimentally to determine how the diametral strength was affected. Hydroxyapatite was air sintered at 1100 degrees C for 1 h with porosities ranging from 1 to 32%. The results indicated that hydroxyapatite with improved densification had higher diametral strength values. X-ray diffraction analysis showed that sintered samples were pure hydroxyapatite.


Prediction of hexagonal lattice parameters of stoichiometric and non-stoichiometric apatites by artificial neural networks
Koçkan, Ümit; Evis, Zafer; Department of Micro and Nanotechnology (2009)
Apatite group of minerals have been widely used in applications like detoxification of wastes, disposal of nuclear wastes and energy applications in addition to biomedical applications like bone repair, substitution, and coatings for metal implants due to its resemblance to the mineral part of the bone and teeth. X-ray diffraction patterns of bone are similar to mineral apatites such as hydroxyapatite and fluorapatite. Formation and physicochemical properties of apatites can be understood better by computer...
Preparation and characterization of hydroxyapatite containing acrylic bone cements
Başgörenay, Burcu; Hasırcı, Nesrin; Department of Polymer Science and Technology (2004)
Acrylic bone cements are one of the most important biomaterials used in orthopaedic surgery and dental applications to fill the cavities or provide mechanical interlock between prosthesis and the bone. Their biocompatibility can be increased by addition of different materials into the formulation, such as hydroxyapatite. Besides all the advantages, bone cements have several drawbacks including tissue necrosis, chemical necrosis, shrinkage of the cement and aseptic loosening. Therefore painstaking research a...
Preparation and Characterization of Chitosan Containing Acrylic Bone Cement Formulations
Endogan, Tugba; Kızıltay, Aysel; Hasırcı, Nesrin (2009-05-22)
Bone cements are used in orthopaedic surgery and dentistry, and the commonly used commercial ones are prepared from poly (methylmethacrylate) (PMMA). In orthopaedic surgery bone cements are used as filling agents for the treatment of damaged tissues and they are used to stabilize the prosthesis by providing the mechanical interlock between bone and metal during the use of metal prothesis and to provide the homogeneous distribution of applied load. In this study, bone cements compositions were prepared by us...
Design and mechanical analysis of a new dental implant that would mimic natural tooth with a periodontal ligament
Pektaş, Ömer; Tönük, Ergin; Department of Mechanical Engineering (2012)
Dental implant is an artificial dental root that is used to construct dental restorations, similar to the original teeth, in order to regain the function of missing teeth of patients experiencing tooth loss. At the interface between the jawbone and the roots of natural teeth, a thin, elastic, shock absorbing tissue, called the periodontal ligament (PDL), forms a cushion which provides certain mobility to the natural teeth. The restorations supported by dental implants, however, involve completely rigid stru...
Investigation of surface structure and biocompatibility of chitosan-coated zirconia and alumina dental abutments
Kalyoncuoglu, Ulku Tugba; Yilmaz, Bengi; Koc, Serap Gungor; Evis, Zafer; ARPACI, PEMBEGÜL UYAR; Kansu, Gulay (Wiley, 2018-12-01)
Background: For long-term success of dental implants, it is essential to maintain the health of the surrounding soft tissue barrier, which protects the bone-implant interface from the microorganisms. Although implants based on titanium and its alloys still dominate the dental implant market, alumina (Al2O3) and zirconia (ZrO2) implant systems are widely used in the area. However, they provide smooth and bioinert surfaces in the transmucosal region, which poorly integrate with the surrounding tissues.
Citation Formats
Z. Evis, “Investigation of tensile strength of hydroxyapatite with various porosities by diametral strength test,” MATERIALS SCIENCE AND TECHNOLOGY, pp. 474–478, 2008, Accessed: 00, 2020. [Online]. Available: