Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation and Characterization of Chitosan Containing Acrylic Bone Cement Formulations
Date
2009-05-22
Author
Endogan, Tugba
Kızıltay, Aysel
Hasırcı, Nesrin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
Bone cements are used in orthopaedic surgery and dentistry, and the commonly used commercial ones are prepared from poly (methylmethacrylate) (PMMA). In orthopaedic surgery bone cements are used as filling agents for the treatment of damaged tissues and they are used to stabilize the prosthesis by providing the mechanical interlock between bone and metal during the use of metal prothesis and to provide the homogeneous distribution of applied load. In this study, bone cements compositions were prepared by using two different PMMA (microspheres prepared by suspension polymerization and ground and sieved PMMA particles). Compositions were prepared by addition of hydroxyapatite (HA) as inorganic load carrying substance, and barium sulphate (BaSO4) as opacifier. To increase biocompatibility of the prepared bone cements, natural polymer chitosan was added. It was observed that addition of chitosan had a positive effect on mechanical properties.
Subject Keywords
Bones
,
Orthopedic surgery
,
Polymers
,
Dentistry
,
Filling
,
Prosthetics
,
Barium
,
Mechanical factors
URI
https://hdl.handle.net/11511/52940
Conference Name
14th National Biomedical Engineering Meeting
Collections
Test and Measurement Center In advanced Technologies (MERKEZ LABORATUVARI), Conference / Seminar
Suggestions
OpenMETU
Core
Preparation and characterization of hydroxyapatite containing acrylic bone cements
Başgörenay, Burcu; Hasırcı, Nesrin; Department of Polymer Science and Technology (2004)
Acrylic bone cements are one of the most important biomaterials used in orthopaedic surgery and dental applications to fill the cavities or provide mechanical interlock between prosthesis and the bone. Their biocompatibility can be increased by addition of different materials into the formulation, such as hydroxyapatite. Besides all the advantages, bone cements have several drawbacks including tissue necrosis, chemical necrosis, shrinkage of the cement and aseptic loosening. Therefore painstaking research a...
Preparation and characterization of acrylic bone cements
Endoğan, Tuğba; Hasırcı, Nesrin; Department of Chemistry (2005)
Acrylic bone cements are used in dentistry and orthopedic surgery to fix prosthetic devices into the bone. Bone cements transfer and distribute the applied load and increase the load-carrying capacity of the prosthesis/cement/bone system with the help of mechanical bonding between the device and the bone. In spite of all their advantages, bone cements have several drawbacks such as insufficient mechanical properties, high exothermic polymerization temperature, release of monomer to the environmental tissue ...
Preparation and characterization of poly(epsilon-caprolactone) scaffolds modified with cell-loaded fibrin gel
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Nesrin (2019-03-15)
Poly(epsilon-caprolactone) (PCL) is one of the most commonly used polymers in the production of tissue engineered scaffolds for hard tissue treatments. Incorporation of cells into these scaffolds significantly enhances the healing rate of the tissue. In this study, PCL scaffolds were prepared by wet spinning technique and modified by addition of fibrinogen in order to form a fibrin network between the PCL fibers. By this way, scaffolds would have micro and nanofibers in their structures. Drying of the wet s...
Investigation of surface structure and biocompatibility of chitosan-coated zirconia and alumina dental abutments
Kalyoncuoglu, Ulku Tugba; Yilmaz, Bengi; Koc, Serap Gungor; Evis, Zafer; ARPACI, PEMBEGÜL UYAR; Kansu, Gulay (Wiley, 2018-12-01)
Background: For long-term success of dental implants, it is essential to maintain the health of the surrounding soft tissue barrier, which protects the bone-implant interface from the microorganisms. Although implants based on titanium and its alloys still dominate the dental implant market, alumina (Al2O3) and zirconia (ZrO2) implant systems are widely used in the area. However, they provide smooth and bioinert surfaces in the transmucosal region, which poorly integrate with the surrounding tissues.
Investigation of tensile strength of hydroxyapatite with various porosities by diametral strength test
Evis, Zafer (2008-04-01)
It is appropriate to administer the diametral test to biomedical materials used in dental applications because stresses formed on dental implants are similar to those that formed in this test. To show this similarity, an experimental study of diametral strength testing of hydroxyapatite was performed. The influence of porosity on hydroxyapatite was investigated experimentally to determine how the diametral strength was affected. Hydroxyapatite was air sintered at 1100 degrees C for 1 h with porosities rangi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Endogan, A. Kızıltay, and N. Hasırcı, “Preparation and Characterization of Chitosan Containing Acrylic Bone Cement Formulations,” presented at the 14th National Biomedical Engineering Meeting, Izmir, Turkey, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52940.