Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Heat Transfer for the Film Cooled Vane of a 1 1 2 Stage High Pressure Transonic Turbine Part II Effect of Cooling Variation on the Vane Airfoil and Inner Endwall
Date
2011-01-01
Author
Kahveci, Harika Senem
MATHISON, RANDALL
DUNN, MICHAEL
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
164
views
0
downloads
Cite This
The impact of film cooling on heat transfer is investigated for the high-pressure vane of a one-and-one-half stage high-pressure turbine operating at design corrected conditions. Cooling is supplied through three independently controllable circuits to holes in the inner and outer endwall, vane leading edge showerhead, and the pressure and suction surfaces of the airfoil in addition to vane trailing edge slots. Four different overall cooling flow rates are investigated and one cooling circuit is varied independently. All results reported in this part of the paper are for a radial inlet temperature profile, one of the four profiles reported in Part I of this paper. Part I describes the experimental setup, data quality, influence of inlet temperature profile, and influence of cooling when compared to a solid vane. This part of the paper shows that the addition of coolant reduces airfoil Stanton Number by up to 60%. The largest reductions due to cooling are observed close to the inner endwall because the coolant to the majority of the vane is supplied by a plenum at the inside diameter. While the introduction of cooling has a significant impact on Stanton Number, the impact of changing coolant flow rates is only observed for gauges near 5% span and on the inner endwall. This indicates that very little of the increased coolant mass flow reaches all the way to 90% span and the majority of the additional mass flow is injected into the core flow near the plenum. Turning off the vane outer cooling circuit that supplies coolant to the outer endwall holes, vane trailing edge slots, and three rows of holes on the pressure surface of the airfoil, has a local impact on Stanton Number. Changes downstream of the holes on the airfoil pressure surface indicate that internal heat transfer from the coolant flowing inside the vane is important to the external heat transfer, suggesting that a conjugate heat-transfer solution may be required to achieve good external heat-transfer predictions in this area. Measurements on the inner endwall show that temperature reduction in the vane wake due to the trailing edge cooling is important to many points downstream of the vane.
Subject Keywords
Airfoils
,
Cooling
,
Heat transfer
,
High pressure (Physics)
,
Turbine components
,
Coolants
,
Flow (Dynamics)
,
Circuits
,
Pressure
,
Temperature profiles
,
Design
,
Film cooling
,
Gages
,
Suction
,
Temperature
,
Turbines
,
Turning
,
Wakes
URI
https://hdl.handle.net/11511/43510
DOI
https://doi.org/10.1115/gt2011-46573
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine-Part II: Effect of Cooling Variation on the Vane Airfoil and Inner End Wall
Kahveci, Harika Senem; MATHISON, RANDALL; DUNN, MICHAEL (2013-03-01)
The impact of film cooling on heat transfer is investigated for the high-pressure vane of a 1-1/2 stage high-pressure turbine operating at design corrected conditions. Cooling is supplied through three independently controllable circuits to holes in the inner and outer end wall, vane leading edge showerhead, and the pressure and suction surfaces of the airfoil, in addition to vane trailing edge slots. Four different overall cooling flow rates are investigated and one cooling circuit is varied independently....
Heat Transfer for the Film Cooled Vane of a 1 1 2 Stage High Pressure Transonic Turbine Part I Experimental Configuration and Data Review With Inlet Temperature Profile Effects
Kahveci, Harika Senem; MATHISON, RANDALL; DUNN, MICHAEL (2011-01-01)
This paper investigates the vane airfoil and inner endwall heat transfer for a full-scale turbine stage operating at design corrected conditions under the influence of different vane inlet temperature profiles and vane cooling flow rates. The turbine stage is a modern 3-D design consisting of a cooled high-pressure vane, an un-cooled high-pressure rotor, and a low-pressure vane. Inlet temperature profiles (uniform, radial and hot streaks) are created by a passive heat exchanger and can be made circumferenti...
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine-Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects
Kahveci, Harika Senem; MATHISON, RANDALL; DUNN, MICHAEL (2013-03-01)
This paper investigates the vane airfoil and inner endwall heat transfer for a full-scale turbine stage operating at design corrected conditions under the influence of different vane inlet temperature profiles and vane cooling flow rates. The turbine stage is a modern 3D design consisting of a cooled high-pressure vane, an un-cooled high-pressure rotor, and a low-pressure vane. Inlet temperature profiles (uniform, radial, and hot streaks) are created by a passive heat exchanger and can be made circumferenti...
Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions
Cecere, Anselmo; Savino, Raffaele; Allouis, Christophe Gerard; Monteverde, Frederic (2015-12-01)
Aim of this work is to analyze the response of an ultra-high temperature ceramic at typical heat flux conditions of thermal protection systems of a re-entry spacecraft. In particular, a ZrB2-SiC based ultra-high temperature advanced ceramic sharp leading edge demonstrator (1 mm nominal radius of curvature) was manufactured and tested in a non-equilibrium high enthalpy supersonic airflow, 20 MJ/kg of peak total enthalpy, by using an arc-jet ground facility. The surface temperature of the leading edge was mon...
AMBIENT TURBULENCE INTENSITY EFFECTS ON THE CHARACTERISTICS OF WAKE DEVELOPMENT OF A MODEL WIND TURBINE AND A MATCHED POROUS DISC
Öztürk, Buğrahan; Uzol, Oğuz; Department of Aerospace Engineering (2022-9-1)
This thesis study aims to observe the ambient turbulence intensity effects on the wake development of a model wind turbine and a matched porous disc. Comprehensive wind tunnel experiments are conducted in the wake of the model wind turbine and the porous disc up to 7 diameters downstream through two-dimensional two-component particle velocimetry. The wakes of the model wind turbine and the porous disc are investigated in terms of the mean flow field, turbulence, wake decay, and wake spreading characteristic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. S. Kahveci, R. MATHISON, and M. DUNN, “Heat Transfer for the Film Cooled Vane of a 1 1 2 Stage High Pressure Transonic Turbine Part II Effect of Cooling Variation on the Vane Airfoil and Inner Endwall,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43510.