Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the consistency of the solutions of the space fractional Schrodinger equation
Download
index.pdf
Date
2012-04-01
Author
Bayin, Selcuk S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
54
views
0
downloads
Cite This
Recently, it was pointed out that the solutions found in the literature for the space fractional Schrodinger equation in a piecewise manner are wrong, except the case with the delta potential. We re-analyze this problem and show that an exact and a proper treatment of the relevant integral prove otherwise. We also discuss effective potential approach and present a free particle solution for the space and time fractional Schrodinger equation in general coordinates in terms of Fox's H-functions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705268]
Subject Keywords
Path integral formulation
,
Generalized functions
,
Integral transforms
,
Anomalous diffusion
,
Fractional calculus
,
Integral equations
,
Wick rotation
,
Complex functions
,
Infinite square well
,
Schrodinger equations
URI
https://hdl.handle.net/11511/63875
Journal
JOURNAL OF MATHEMATICAL PHYSICS
DOI
https://doi.org/10.1063/1.4705268
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
On the consistency of the solutions of the space fractional Schroumldinger equation (vol 53, 042105, 2012)
Bayin, Selcuk S. (2012-08-01)
Recently we have reanalyzed the consistency of the solutions of the space fractional Schroumldinger equation found in a piecewise manner, and showed that an exact and a proper treatment of the relevant integrals prove that they are consistent. In this comment, for clarity, we present additional information about the critical integrals and describe how their analytic continuation is accomplished.
An Application of the rayleigh-ritz method to the integral-equation representation of the one-dimensional schrödinger equation
Kaya, Ruşen; Taşeli, Hasan; Department of Mathematics (2019)
In this thesis, the theory of the relations between differential and integral equations is analyzed and is illustrated by the reformulation of the one-dimensional Schrödinger equation in terms of an integral equation employing the Green’s function. The Rayleigh- Ritz method is applied to the integral-equation formulation of the one-dimensional Schrödinger equation in order to approximate the eigenvalues of the corresponding singular problem within the desired accuracy. The outcomes are compared with those r...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
On solutions of the Schrodinger equation for some molecular potentials: wave function ansatz
IKHDAİR, SAMEER; Sever, Ramazan (2008-09-01)
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrodinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, delta and nu are also given, where eta depends on a linear combination of the angular momentum quantum number l and the spatial dimensions D and delta is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigenso...
On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems
AKBAŞ, MERAL; Kaya, Serap; Kaya Merdan, Songül (2017-07-01)
We prove long-time stability of linearly extrapolated BDF2 (BDF2LE) timestepping methods, together with finite element spatial discretizations, for incompressible Navier-Stokes equations (NSE) and related multiphysics problems. For the NSE, Boussinesq, and magnetohydrodynamics schemes, we prove unconditional long time L-2 stability, provided external forces (and sources) are uniformly bounded in time. We also provide numerical experiments to compare stability of BDF2LE to linearly extrapolated Crank-Nicolso...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. S. Bayin, “On the consistency of the solutions of the space fractional Schrodinger equation,”
JOURNAL OF MATHEMATICAL PHYSICS
, pp. 0–0, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63875.