Silver nanowire networks on polydimethylsiloxane for organic and perovskite solar cell electrodes

Güner, Elif Özlem
Transparent and conductive electrodes are widely used in optoelectronic devices. The most prominent and commercial transparent conductive electrode is indium tin oxide (ITO). However, there is an increasing demand to replace ITO with alternative materials due to inherent drawbacks of ITO such as its cost, brittleness and scarcity of indium. Silver nanowire (Ag NW) networks are among the best candidates to replace ITO with their excellent optoelectronic and mechanical properties. Ag NW networks have already been demonstrated as electrodes in a wide range of applications such as transparent heaters, flexible displays, stretchable electronics and photovoltaic devices. However, there are still some challenges in obtaining a uniform Ag NW network on different substrates. In this thesis, a polydimethylsiloxane (PDMS) assisted transfer method was developed to overcome this problem. Ag NWs synthesized via polyol process were spray coated onto glass substrates in network form. PDMS was then casted onto Ag NW networks and peeled off following curing to transfer Ag NWs onto PDMS surface. This transparent Ag NW embedded PDMS substrates were then used as electrodes in both organic and perovskite based solar cells. First, a semi-transparent organic solar cell (OSC) with Ag NW/PDMS electrodes was demonstrated using a commercially available and a novel polymer as the photoactive layers. Power conversion efficiencies of above 2% and 3% was obtained from these cells with architectures of glass/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag NW/PDMS and glass/ITO/ZnO/PBDB-T:ITIC/PEDOT:PSS/Ag NW-PDMS, respectively, under AM 1.5G illumination conditions. Secondly, a mesoporous perovskite solar cell was demonstrated using Ag NW/PDMS electrodes and commercially available photoactive layers. The cells based on glass/FTO/k-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Ag NW/PDMS architecture showed a power conversion efficiency of 6.5% under AM 1.5G illumination conditions. PDMS assisted transfer method utilized herein offers a simple, solution-based and transparent alternative to evaporation method for the formation of solar cell electrodes.


Silver nanowire inks for fabrics
Güven, Merve Nur; Toppare, Levent Kamil; Department of Chemistry (2019)
Conductive inks are used extensively in electronic devices like sensors, batteries, photovoltaic devices, antenna and organic light emitting diodes. These inks typically made from silver. Wearable technology is another industry which requires inks to be flexible. These devices need low temperature cured silver pastes. Low temperature pastes typically make use of silver nanoparticles. These pastes have some problems with sintering and substrate adhesion. In this thesis, to overcome these problems, silver nan...
Development of hole transport transparent conductive electrodes for n-type crystalline silicon solar cells
Akdemir, Ozan; Bek, Alpan; İmer, Muhsine Bilge; Department of Micro and Nanotechnology (2018)
Conventional transparent conductive electrodes (TCEs) used in crystal silicon (c-Si) solar cells are commonly made of indium tin oxide (ITO) which provides low sheet resistance and high transparency. However, due to indium scarcity, ITO layers increase the fabrication cost; thus, alternative TCEs, such as fluorine-doped tin oxide (FTO), zinc oxide (ZnO), metal nanowires and Oxide/Metal/Oxide (OMO) multilayers, are being investigated. Conventional solar cells also make use of doped layers, to create the junc...
Polymer light emitting diodes and organic solar cells towards ito free devices and high efficiency devices using electrochemically synthesized polymers /
Hızalan Özsoy, Gönül; Toppare, Levent Kamil; Department of Chemistry (2017)
In this study, polymer based solar cells and polymer based light emitting diodes were constructed. In the third and fourth chapters of this study, effect of terminal units and effect of molecular weight on electroluminescence and photovoltaic properties were investigated. Triphenyl end capped polymer P1 based PLED shows luminance value of 10411cd/m2 at 8.5V whereas benzene end capped polymer P2 based PLED has the peak luminance value of 14583cd/m2 at 8V. P2 based photovoltaic devices exhibited superior perf...
Characterization and contact resistivity studies of ito thin films for use in silicon heterojunction solar cells
Güler, Seçil; Erçelebi, A. Çiğdem.; Department of Physics (2020)
Transparent conductive oxides (TCO) are widely used in optoelectronic devices such as flat panel displays and solar cells. Indium tin oxide, due to its wide optical bandgap and high transmittance in the visible spectrum, is commonly used for device applications such as anti-reflective coating, front TCO layer in silicon heterojunction solar cells. When ITO is used as TCO layer, the carrier transport mechanism through the junction is improved due to the decrease in the free carrier absorption. In this study,...
Fabrication and characterization of PEDOT:PSS hole transport layers for silicon solar cells
Türkay, Deniz; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Heterojunction silicon solar cells have gained considerable interest in recent years with the demonstration of record-high device performances. However, these devices are typically based on inorganic layers fabricated at high temperatures under vacuum environment, using toxic precursors. The low temperature budget, non-toxic chemical contents, and wide range of adjustability in physical and electrical properties make poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) a promising candidate a...
Citation Formats
E. Ö. Güner, “Silver nanowire networks on polydimethylsiloxane for organic and perovskite solar cell electrodes,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Metallurgical and Materials Engineering., Middle East Technical University, 2019.