Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Control system design and implementation of a tilt rotor UAV
Download
index.pdf
Date
2019
Author
Cevher, Levent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
844
views
539
downloads
Cite This
In this thesis, a hybrid vertical take off and landing unmanned air vehicle platform is designed and developed. The platform uses tricopter configuration for takeoff and landing while it uses its fixed wings for forward flight. Control algorithms are developed for the VTOL aircraft. For this purpose, first nonlinear simulation code is developed in Matlab/Simulink environment. The simulation uses the wind tunnel experimental data for the propellers and aerodynamic data obtained from a package program XFLR 5 that uses panel method. The controller uses Linear Quadratic Tracking (LQT) algorithms for vertical takeoff, transition and forward flight cases. For different flight phases, trim flight conditions are obtained and controllers are designed. During transition, weighted pseudo inverse and blended inverse control allocation methods are employed and simulation results are compared. The obtained controller gains are tuned in the lab test setup and flight tests are performed for vertical takeoff and landing flight, demonstrating acceptable flight performance.
Subject Keywords
Drone aircraft.
,
Keywords: Tricopter
,
tilt-rotor
,
unmanned air vehicle
,
attitude control
,
linear quadratic tracking
,
flight test.
URI
http://etd.lib.metu.edu.tr/upload/12624472/index.pdf
https://hdl.handle.net/11511/44139
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Control System Design of a Vertical Take-off and Landing Fixed-Wing UAV
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (2016-05-20)
In this study, design and implementation of control system of a vertical take-off and landing (VTOL) unmanned aerial vechicle (UAV) with level flight capability is considered. The platform structure includes both multirotor and fixed-wing (FW) conventional aircraft control surfaces: therefore named as VTOL-FW. The proposed method includes implementation of multirotor and airplane controllers and design of an algorithm to switch between them in achieving transitions between VTOL and FW flight modes. Thus, VT...
Design, modeling and control of a hybrid UAV
Muratoğlu, Abdurrahim; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
Vertical takeoff and landing (VTOL) vehicles that can fly like conventional airplanes after the takeoff, provide a promising area to find applications in the future. These hybrid vehicles combine the advantages of rotary-wing and fixed-wing aircraft configurations such as having capability of hovering flight, takeoff and landing without utilizing a runway, long range, high speed flight with reasonable endurance. In this study, a tilt-rotor tricopter VTOL UAV having a conventional fixed-wing airframe is desi...
Optimal Design of a Miniature Quad Tilt Rotor UAV
Kahvecioglu, Ahmet Caner; Alemdaroglu, Nafiz (2015-06-12)
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera wei...
Hovering Control of a Tilt-Wing UAV
Çakır, Hasan; Kurtuluş, Dilek Funda (2019-09-20)
In this study, the design and analysis of hovering controller of an UAV which is capable of doing vertical take-off and landing using the fixed six rotors placed on the tilt-wing and tilt-tail will be explained. The aircraft will have four rotors on the wing and two rotors on the tail. The main wing and horizontal tail will be capable of 90° tilting. Whole flight is separated into three flight modes, which are VTOL, Transition and Forward Flight, to have a robust control on aircraft. Only hover control of t...
Aerodynamic design and control of tandem wing unmanned aerial vehicle
Kaya, Taşkın; Özgen, Serkan; Department of Aerospace Engineering (2019)
This thesis presents an approach towards the design methodology of electrical propulsion, tandem wing unmanned aerial vehicle. Due to its possible rewarding features, tandem wing design is investigated as the main subject of this study. The stability and control characteristics of tandem wing aircraft are critical since the interference between the two wings may result in nonlinear aerodynamic characteristics for varying angles of attack. Thus, the design of the controller system requires careful handling, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Cevher, “Control system design and implementation of a tilt rotor UAV,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.