Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Utilization of fly ash-portland cement binary systems to control alkali-silica reaction
Download
index.pdf
Date
2019
Author
Çelen, Ahmet Ziya
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
The highly alkaline pore solution of the portland cement concrete is not an ideal environment for certain reactive aggregates with poorly-crystalline or amorphous silica phases. In this environment, these aggregates partially or completely disintegrate resulting in formation of a hydrophilic, amorphous gel mainly composed of alkalis and water from the pore solution of the hydrated cement matrix and silica from the aggregates. The newly formed alkali-silica reaction (ASR) gel can expand by absorbing huge amounts of water irreversibly, becoming a significant problem if the gel is confined in a matrix such as hardened cement paste. Expansion of the gel can result in localized internal stresses that cannot be relieved by movement of the ASR gel into to the present voids of the matrix leading to extensive micro-cracks in the concrete. Eventually, ASR can cause critical loss of stiffness, impermeability and strength of concrete. The focus of this thesis is evaluating the ASR performance of portland cement/fly ash binary mortars. For this purpose, a total of 13 fly ashes with a wide range of chemical and mineralogical composition are selected from the leading thermal power plants in Turkey (Tunçbilek, Çatalağzı, Afşin Elbistan, İçdaş, Kemerköy, Yatağan and Yeniköy). The ASR performance of such a variety of Turkish fly ashes has not been investigated at this level before. An in-depth analysis of the impact of chemical and mineralogical differences of the fly ashes on the ASR performance of binary Portland cement/fly ash mortars are also conducted.
Subject Keywords
Silica.
,
Alkali-Silica Reaction (ASR)
,
Fly Ash
,
Chemical Composition
,
Portland Cement.
URI
http://etd.lib.metu.edu.tr/upload/12624486/index.pdf
https://hdl.handle.net/11511/44214
Collections
Graduate School of Natural and Applied Sciences, Thesis