Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Electromagnetic Micro Power Generator for Low-Frequency Environmental Vibrations Based on the Frequency Upconversion Technique
Date
2010-02-01
Author
Sari, Ibrahim
Balkan, Raif Tuna
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
This paper presents a microelectromechanical-system-based electromagnetic vibration-to-electrical power generator that can harvest energy from low-frequency external vibrations. The efficiency of vibration-based harvesters is proportional to excitation frequency, so the proposed generator is designed to convert low-frequency environmental vibrations to a higher frequency by employing the frequency upconversion (FupC) technique. It has been shown that the generator can effectively harvest energy from environmental vibrations of 70-150 Hz and generates 0.57-mV voltage with 0.25-nW power from a single cantilever by upconverting the input vibration frequency of 95 Hz-2 kHz. The fabricated generator size is 8.5 x 7 x 2.5 mm(3), and a total of 20 serially connected cantilevers have been used to multiply the generated voltage and power. The generator demonstrated in this paper is designed for the proof of concept, and the power and voltage levels can further be increased by increasing the number of cantilevers or coil turns. The performance of the generator is also compared with that of a samesized custom-made traditional magnet-coil-type generator and with that of a traditional generator from the literature to prove its effectiveness. [2009-0136]
Subject Keywords
Array of cantilevers
,
Energy harvesting
,
Energy scavenging
,
Frequency upconversion (FupC)
,
Micro power generator
URI
https://hdl.handle.net/11511/44431
Journal
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
DOI
https://doi.org/10.1109/jmems.2009.2037245
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
A wideband electromagnetic micro power generator for wireless microsystems
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2007-06-14)
This paper presents a wideband electromagnetic (EM) vibration-to-electrical power generator which can efficiently scavenge energy and generate steady power over a predetermined frequency range. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating cantilever beams. The reported generator covers a wide band of external vibration frequency by implementing a number of serially connected cantilevers in different lengths. The device generates 0.5 mu W continuous p...
An electromagnetic micro power generator for low-frequency environmental vibrations
Külah, Haluk (2004-01-01)
This paper presents an electromagnetic (EM) vibrationto-electrical power generator which can efficiently scavenge energy from low-frequency external vibrations. The reported generator up-converts low-frequency environmental vibrations to a much higher frequency through a novel electro-mechanical frequency up-converter using a magnet, and hence provides efficient energy conversion even at low frequencies. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating c...
An electromagnetic micro power generator for wideband environmental vibrations
Sari, Ibrahim; Balkan, Raif Tuna; Külah, Haluk (2008-07-01)
This paper presents a wideband electromagnetic vibration-to-electrical micro power generator. The micro generator is capable of generating steady power over a predetermined frequency range. Power is generated by means of the relative motion between a magnet and coils fabricated over resonating cantilevers through electromagnetic induction. The reported generator covers a wide band of external vibration frequency by implementing a number of serially connected cantilevers in different lengths resulting in an ...
An Electromagnetic Micro-Power Generator for Low Frequency Vibrations with Tunable Resonance
Türkyılmaz, Serhan; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
This paper presents an electromagnetic (EM) micro-power generator with tunable resonance frequency which can harvest energy from low frequency environmental vibrations. The reported power generator up-converts low frequency environmental vibrations before mechanical-to-electrical energy conversion by utilizing two diaphragms with different resonance frequencies. Power is generated through electromagnetic induction by a magnet attached to the low frequency diaphragm, and a 50 turn, 2.1 Omega coil, and a magn...
AN ELECTROMAGNETIC MICRO POWER GENERATOR FOR LOW FREQUENCY ENVIRONMENTAL VIBRATIONS BASED ON THE FREQUENCY UP-CONVERSION TECHNIQUE
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2009-01-29)
This paper presents an electromagnetic (EM) vibration-to-electrical power generator, which can efficiently harvest energy from low-frequency external vibrations by using frequency up-conversion. The generator can effectively scavenge energy from low frequency environmental vibrations of 70-150 Hz and generates 0.57 mV voltage with 0.25 nW power from a single cantilever at a vibration frequency of 95 Hz. The fabricated generator size is 8.5 x 7 x 2.5 mm(3) and a total number of 20 serially connected cantilev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Sari, R. T. Balkan, and H. Külah, “An Electromagnetic Micro Power Generator for Low-Frequency Environmental Vibrations Based on the Frequency Upconversion Technique,”
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
, pp. 14–27, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44431.