Stepped-etching for preserving critical dimensions in through-wafer deep reactive ion etching of thick silicon

Alper, Said Emre
Aydemir, A.
Akın, Tayfun
This paper presents the experimental investigation of stepped deep reactive ion etching (DRIE) process in order to minimize critical-dimension (CD) variations due to local heating observed in through-wafer etch of 100 mum-thick, high aspect ratio silicon microstructures that are suspended over glass substrate. Classical methods of cooling the substrate, using a heat-sink layer, or increasing the thickness of sidewall passivation in general turns out to be insufficient for preventing excessive damage in critical dimensions during deep etches. Alternatively, stepped etching is evaluated for improving the CD variation in deep through-wafer etch. Preliminary results indicate that the CD variation improves from +2.56 mum to +0.55 mum for a 2 mum-wide and 100 mum-deep capacitive comb finger gap, by using 7 successive DRIE steps with 10 min etch and 20 min interrupt periods, compared to a single 70 min DRIE without any interrupt.


Numerical and Experimental Investigation into LWIR Transmission Performance of Complementary Silicon Subwavelength Antireflection Grating (SWARG) Structures
Cetin, Ramazan; Akın, Tayfun (Springer Science and Business Media LLC, 2019-03-18)
This paper presents a detailed comparison between the long wave infrared (LWIR) transmission performances of binary, silicon based, structurally complementary pillar and groove type antireflective gratings that can be used for wafer level vacuum packaging (WLVP) of uncooled microbolometer detectors. Both pillar and groove type gratings are designed with various topological configurations changing in various period sizes (Delta) from 1.0 mu m to 2.0 mu m, various heights/depths (h) from 0.8 mu m to 1.8 mu m,...
Comparison of Two Alternative Silicon-On-Glass Microfabrication Processes for MEMS Inertial Sensors
Torunbalci, M. M.; Tatar, E.; Alper, S. E.; Akın, Tayfun (2011-09-07)
This paper presents experimental comparison of a modified silicon-on-glass (M-SOG) process to a previously-reported classical SOG (C-SOG) process based on the use of SOI wafers, yielding a stress free < 111 > silicon structural layer with desired structure thickness. The basic difference between these processes is the sequence of the step at which the silicon microstructures are defined by DRIE, making M-SOG more robust against critical dimension (CD) variations. Overall, M-SOG provides a simple, high yield...
Symmetrical and decoupled nickel microgyroscope on insulating substrate
Alper, Se; Akın, Tayfun (Elsevier BV, 2004-09-21)
This paper presents a symmetrical and decoupled surface micromachined gyroscope fabricated by electroforming thick nickel on a glass substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for improved sensitivity, while the decoupled drive and sense oscillation modes prevents unstable operation due to mechanical coupling, resulting in a low zero-rate output drift. The use of a glass substrate instead of a silicon substrate reduces noise due to the para...
Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications part 1 endwall heat transfer and total pressure loss characteristics
Uzol, Oğuz (null; 2001-06-07)
Detailed experimental investigation of the wall heat transfer enhancement and total pressure loss characteristics for two alternative elliptical pin fin arrays is conducted and the results are compared to the conventional circular pin fin arrays. Two different elliptical pin fin geometries with different major axis lengths are tested, both having a minor axis length equal to the circular fin diameter and positioned at zero degrees angle of attack to the free stream flow. The major axis lengths for the two e...
DRIE process optimization to achieve high aspect ratio for capacitive MEMS sensors
Aydemir, Akın; Akın, Tayfun (null; 2015-09-23)
This paper focuses on process optimization of deep reactive ion etching (DRIE) to achieve high aspect ratio structures, specifically the fabrication of capacitive sensors. Very high aspect ratios up to 70:1 on trenches of 1.0 µm and have been achieved using the Bosch process by optimizing the process parameters. Effects of the process parameters on the etch rate, profile angle, and selectivity to the masking material are investigated in detail. This approach can be easily integrated on conventional ICP equi...
Citation Formats
S. E. Alper, A. Aydemir, and T. Akın, “Stepped-etching for preserving critical dimensions in through-wafer deep reactive ion etching of thick silicon,” 2009, Accessed: 00, 2020. [Online]. Available: