Stepped-etching for preserving critical dimensions in through-wafer deep reactive ion etching of thick silicon

Alper, Said Emre
Aydemir, A.
Akın, Tayfun
This paper presents the experimental investigation of stepped deep reactive ion etching (DRIE) process in order to minimize critical-dimension (CD) variations due to local heating observed in through-wafer etch of 100 mum-thick, high aspect ratio silicon microstructures that are suspended over glass substrate. Classical methods of cooling the substrate, using a heat-sink layer, or increasing the thickness of sidewall passivation in general turns out to be insufficient for preventing excessive damage in critical dimensions during deep etches. Alternatively, stepped etching is evaluated for improving the CD variation in deep through-wafer etch. Preliminary results indicate that the CD variation improves from +2.56 mum to +0.55 mum for a 2 mum-wide and 100 mum-deep capacitive comb finger gap, by using 7 successive DRIE steps with 10 min etch and 20 min interrupt periods, compared to a single 70 min DRIE without any interrupt.


Numerical and Experimental Investigation into LWIR Transmission Performance of Complementary Silicon Subwavelength Antireflection Grating (SWARG) Structures
Cetin, Ramazan; Akın, Tayfun (Springer Science and Business Media LLC, 2019-03-18)
This paper presents a detailed comparison between the long wave infrared (LWIR) transmission performances of binary, silicon based, structurally complementary pillar and groove type antireflective gratings that can be used for wafer level vacuum packaging (WLVP) of uncooled microbolometer detectors. Both pillar and groove type gratings are designed with various topological configurations changing in various period sizes (Delta) from 1.0 mu m to 2.0 mu m, various heights/depths (h) from 0.8 mu m to 1.8 mu m,...
Comparison of Two Alternative Silicon-On-Glass Microfabrication Processes for MEMS Inertial Sensors
Torunbalci, M. M.; Tatar, E.; Alper, S. E.; Akın, Tayfun (2011-09-07)
This paper presents experimental comparison of a modified silicon-on-glass (M-SOG) process to a previously-reported classical SOG (C-SOG) process based on the use of SOI wafers, yielding a stress free < 111 > silicon structural layer with desired structure thickness. The basic difference between these processes is the sequence of the step at which the silicon microstructures are defined by DRIE, making M-SOG more robust against critical dimension (CD) variations. Overall, M-SOG provides a simple, high yield...
Symmetrical and decoupled nickel microgyroscope on insulating substrate
Alper, Se; Akın, Tayfun (Elsevier BV, 2004-09-21)
This paper presents a symmetrical and decoupled surface micromachined gyroscope fabricated by electroforming thick nickel on a glass substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for improved sensitivity, while the decoupled drive and sense oscillation modes prevents unstable operation due to mechanical coupling, resulting in a low zero-rate output drift. The use of a glass substrate instead of a silicon substrate reduces noise due to the para...
Experimental Investigation of Particle-Filler Distribution in Continuous Fiber-Reinforced Composites Produced via Liquid Molding
Aydil, T.; Tanabi, H.; Erdal Erdoğmuş, Merve (2013-09-11)
This paper presents the preliminary results of an experimental study undertaken to investigate the particle distribution in particle-filled, continuous fiber-reinforced composites produced via two liquid molding methods: Resin Transfer Molding (RTM) and Compression Resin Transfer Molding (CRTM). Composite specimens are produced and characterized to compare composite microstructures (particle filler distributions) obtained in each method, as well as to study the effect of a processing parameter (injection sp...
A low-power robust humidity sensor in a standard CMOS process
Okcan, Burak; Akın, Tayfun (2007-11-01)
This paper presents a low-cost thermal-conductivity-based humidity sensor implemented using a 0.6-mu m CMOS process, where suspended p-n junction diodes are used as the humidity-sensitive elements. The measurement method uses the difference between the thermal conductivities of air and water vapor at high temperatures by comparing the output voltages of two hea ted and thermally isolated diodes; one of which is exposed to the environment and has a humidity-dependent thermal conductance, while the other is s...
Citation Formats
S. E. Alper, A. Aydemir, and T. Akın, “Stepped-etching for preserving critical dimensions in through-wafer deep reactive ion etching of thick silicon,” 2009, Accessed: 00, 2020. [Online]. Available: