Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of high performance long wavelength infrared HgCdTe focal plane arrays
Download
index.pdf
Date
2019
Author
Barutçu, Berna
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
368
views
268
downloads
Cite This
This thesis study reports the characterization of long wavelength infrared (LWIR) HgCdTe photovoltaic detectors with the p on n structure and 9.5 μm cut-off wavelength grown by molecular beam epitaxy on CdZnTe substrates and fabricated with different passivation processes. The characterization study was conducted at both pixel and focal plane array (FPA) levels. While the detectors exhibit diffusion dominated dark current at temperatures at and above 130 K under reverse bias voltages typically used in imaging applications, the major component of the dark current is trap assisted tunneling (TAT) at low temperatures (80 K). We carried out a detailed characterization study on the detector pixels with 30 μm pitch in order to identify the properties of the traps establishing the generation-recombination (G-R) and the TAT currents. Dark current analysis study yielded a hole trap in the n-side at an energy of 0.36Eg (Eg is the bandgap of the absorber material) measured from the valence band edge with a density in the order of 1014 cm-3. While this trap has been reported in the literature, we explored the further properties of this trap including the capture cross section characteristics exhibiting capture barrier as well as the effect of it on the signal to noise ratio of the detector through the G-R and TAT components of the dark current contributing to the 1/f noise of the detectors. vi Shunt (ohmic) leakage current was observed in the detectors fabricated with different passivation processes including CdTe and CdTe/ZnS subjected to different annealing conditions. The absence of this leakage current in a detector fabricated with the same material but with properly applied and processed CdTe passivation suggests that it originates from the surface. We have also observed that the shunt current component introduces significant 1/f noise with a noise coefficient, α, in the order of that of the G-R current (10-3). The TAT current is observed to introduce 1/f noise to exhibit noise current at 1 Hz expressed as 0.8x10-6(ITAT)0.57. The detectors exhibit a peak specific detectivity of ~1x1011 cmHz1/2/W at 78 K with f/2 optics corresponding to temporal noise equivalent temperature difference of ~20 mK with an integration time as low as 400 μs. We also present the characteristics of a mid-format (320x256) focal plane array (FPA) fabricated with the same material in order to assess the FPA level performance of the detectors.
Subject Keywords
Long wavelength infrared.
,
Keywords: LWIR HgCdTe
,
Dark Current Modeling
,
Trap Assisted Tunneling
,
Noise Analysis.
URI
http://etd.lib.metu.edu.tr/upload/12624560/index.pdf
https://hdl.handle.net/11511/44569
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of high performance uncooled infrared detector materials
Kebapçı, Başak; Akın, Tayfun; Turan, Raşit; Department of Micro and Nanotechnology (2011)
This thesis reports both the optimizations of the vanadium oxide (VOx) thin film as an active infrared detector material by the magnetron sputtering deposition method and its use during fabrication of proper resistors for the microbolometers. Vanadium oxide is a preferred material for microbolometers, as it provides high TCR value, low noise, and reasonable resistance, and a number of high-tech companies have used this material to obtain state-of-the-art microbolometer arrays. This material is first used in...
Numerical prediction of aft radiation of turbofan tones through exhaust jets
Özyörük, Yusuf (2009-08-07)
This paper describes a numerical methodology for calculating tonal noise propagation and radiation through turbomachinery exhaust ducts, including non-uniform background jet flows. The numerical method is based on solution of the linearized Euler equations directly in the frequency domain, employing a direct, sparse matrix solver in parallel. Acoustic sources are introduced into the computational domain via the perfectly matched layer equations. Various test cases including propagation through infinite duct...
Experimental Characterization of Micro Vortex Generators in Low Speed Flows
Akpolat, Tuğrul; Abdulrahim, Anas; Hassanein, Abdelrahman; Uzol, Oğuz; Perçin, Mustafa (2021-09-08)
In this study, we present the experimental results of the characterization of micro-ramp type Micro Vortex Generators (MVGs) in low-speed flows. The undisturbed boundary layer profile was measured by means of Hot-Wire Anemometry. Two MVGs with the same design but different height-to-boundary layer thickness ratios are used in this study. Two-dimensional twocomponent particle image velocimetry measurements are conducted in the wake of the MVGs. The results reveal the lift-off of the wake away from the wall f...
On-Line Application of SHEM by Particle Swarm Optimization to Grid-Connected, Three-Phase, Two-Level VSCs with Variable DC Link Voltage
Guvengir, Umut; ÇADIRCI, IŞIK; Ermiş, Muammer (2018-08-01)
This paper is devoted to an otablen-line application of the selective harmonic elimination method (SHEM) to three-phase, two-level, grid-connected voltage source converters (VSCs) by particle swarm optimization (PSO). In such systems, active power can be controlled by the phase shift angle, and reactive power by the modulation index, against variations in the direct current (DC) link voltage. Some selected, low-odd-order harmonic components in the line-to-neutral output voltage waveforms are eliminated by c...
Optimization of open-tube furnace diffusion with Bbr3 liquid source for industrial p-type boron doping process
Orhan, Efe; Kökbudak, Gamze; Semiz, Emel; Es, Fırat; Turan, Raşit (Middle East Technical University; 2018-07-06)
In this study, optimization of boron emitter for n-type crystalline Si solar cells has been studied in detail. Industrial open-tube (atmospheric) furnace with BBr3 as liquid B source was utilized which is a preferred dopant for the diffusion process of n-type wafers in industry [1] [2]. During the processes, full boat (270 wafers) n-type square samples were used to investigate the uniformity from gas zone to door zone and inside the wafer. To achieve uniform boron emitters on large n-type substrates, parame...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Barutçu, “Development of high performance long wavelength infrared HgCdTe focal plane arrays,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2019.