A Modular Superconducting Generator for Offshore Wind Turbines

Download
2013-05-01
Keysan, Ozan
Mueller, Markus A
In this study, a new claw-pole type transverse flux superconducting generator topology is presented. The machine has a stationary superconducting field winding, which eliminates electrical brushes and cryocouplers. The machine is specifically designed for low-speed high torque applications such as large offshore wind turbines. The proposed machine is robust and has a modular structure.
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM

Suggestions

Validation of Parallel WRF Downscaling Methodology using OpenFOAM
Leblebici, Engin; Tuncer, İsmail Hakkı (2017-06-26)
The main objective of this study is to obtain real-time atmospheric flow solutions using open source CFD solver OpenFOAM coupled with Numerical Weather Prediction (NWP) model; Weather Research Forecast (WRF). NWP can take moist convection, land surface parameterization, atmospheric boundary layer physics into account, but wind flow features finer than 1 km aren't captured by the turbulence physics of such models. CFD simulations, however, have proved to be useful at capturing the detail...
A Transverse Flux High Temperature Superconducting Generator Topology for Large Direct Drive Wind Turbines
Keysan, Ozan (2012-01-01)
The cost and mass of an offshore wind turbine power-train can be reduced by using high-temperature superconducting generators, but for a successful commercial design the superconducting generator should be as reliable as its alternatives. In this paper, we present a novel transverse flux superconducting generator topology which is suitable for low-speed, high-torque applications. The generator is designed with a stationary superconducting field winding and a variable reluctance claw pole motor for simplifie...
A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines
Zeinali, Reza; Keysan, Ozan (MDPI AG, 2019-02-01)
A novel Vernier type magnetically geared direct-drive generator for large wind turbines is introduced in this paper. Conventional Vernier-type machines and most of the direct-drive wind turbine generators use excessive amount of permanent magnet, which increases the overall cost and makes the manufacturing process challenging. In this paper, an electrically excited (PM_less) claw-pole type Vernier machine is presented. This new topology has the potential of reducing mass and cost of the generator, and can m...
A dual modality system for high resolution-true conductivity imaging
Eyüboğlu, Behçet Murat; İder, Yusuf Ziya (2001-06-01)
In this study, a dual modality imaging system which utilises the magnetic flux density measurements, acquired using Magnetic Resonance Current Density Imaging (MRCDI) techniques, and the surface potential measurements, obtained from conventional Electrical Impedance Tomography (EIT) techniques, to reconstruct high resolution absolute conductivity images. An iterative algorithm is developed to minimise the difference between the current densities calculated based on the potential and the magnetic field measu...
A PARYLENE BONDING BASED FABRICATION METHOD FOR GRAVIMETRIC RESONANT BASED MASS SENSORS
Gokce, Furkan; Aydın, Eren; Kangül, Mustafa; Toral, Taylan B.; Zorlu, Ozge; Sardan-Sukas, Ozlem; Külah, Haluk (2017-06-22)
In this study, a fabrication method utilizing parylene bonding for gravimetric resonant based mass sensors is presented. First, parylene bonding was experimentally tested and compared with the literature. Average shear strength was measured as 16.3 MPa (sigma=3MPa). Then, resonators located on top of a microchannel for real-time detection were fabricated using the presented method. Simulations and experiments verify proper operation of the fabricated resonators, and the applicability of the method for fabri...
Citation Formats
O. Keysan and M. A. Mueller, “A Modular Superconducting Generator for Offshore Wind Turbines,” JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, pp. 2103–2108, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44577.