Effect of increased volume of fibers on the fracture properties of cementitious composites

Download
2019
Altürk, Ufuk Emre
To apply fiber as a reinforcement, which is much older than the history of concrete, together with concrete is rather a new technology, while cement based products are the most consumed materials after water, considering the consumption amounts. The application areas of fiber reinforced concrete are growing day by day. However, in common practice, fiber content is usually limited up to 2% due to economical, workability and agglomeration problems. This study investigates the changes in the performance of nine FRC mixes built with three different types of fibers; steel, polypropylene and polypropylene-polyethylene copolymer, with three different dosages; 2%, 4% and 6% per volume. With the help of fly ash and concrete chemicals, the properties of the matrix can be regulated to breach the limit amount of fibers, provided to act as single body. To measure the increase in the flexural capacity and energy absorption rates, and also any effects on the compressive strength, three different test set-ups were prepared, cube compression, beam bending and tensile splitting tests. For data acquisition, video extensometer cameras are used. By the help of this high-frequency gadgets, each phase of fraction was recorded in detail. Energy absorption capacities were derived through calculations with load and deflection data. To assure objective comparison, calculated energy values were used in the comparative study.

Suggestions

Effect of Synthetic Fibers on Energy Absorption Capacity of Normal and High Performance Concrete
Şengün, Emin; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-06-08)
With the increasing aim of incorporating concrete in different applications and infrastructure elements, the use of macro synthetic fiber incorporated concretes has become real popular thanks to their high energy absorption capacity, toughness and impact resistance. The aim of this study is to investigate the effects of synthetic fibers on toughness and energy absorption of normal and high performance concretes. For this experimental study, eight concrete groups were designed using synthetic fibers of vario...
Effect of test methods on the performance of fiber reinforced concrete with different dosages and matrices
Hetemoğlu, Yalçın Oğuz; Yaman, İsmail Özgür; Department of Civil Engineering (2018)
Through the last few decades, the idea of adding fibers in to concrete has been quite improved, considering the significant contribution of fibers to the mechanical properties of concrete such as tensile strength, energy absorption capacity and ductility. As a result of many intensive research Fiber Reinforced Concrete (FRC) has become a high-tech material that ensures great performance yet needs efficient design and application. However, the lack of a universally accepted approach and standardized test met...
Effect of Fly Ash Fineness on the Activation of Geopolymer Concrete
Aleessa Alam, Burhan; Yaman, İsmail Özgür (2012-10-05)
In the field of construction materials and particularly in concrete, cement is considered as a key element since it generates a strong and durable material through a simple hydration process. However, for many reasons (mainly economic and environmental) researchers are trying to find a new material that could replace cement or at least part of it as a binding agent in concrete. Regarding this issue, cement replacement materials like fly ash and slag have taken the lead during the last few decades. These mat...
Effect of specimen size, fiber type and concrete strength on the flexural performance of fiber reinforced concrete
Güzelce, Aydinç; Yaman, İsmail Özgür; Department of Civil Engineering (2019)
To overcome the brittleness of concrete, fiber reinforcement is a commonly used material, which highly increases the toughness of concrete in a cost-effective way. The aim of this study is to assess the effect of different fiber parameters on the flexural behavior of fiber reinforced concrete. Bending tests were performed on two different beam sizes made of 20 different concrete batches. The type and amount of the fibers along with the grade of the concrete were changed to form this batch combination. The f...
Determination of the Tensile Strength of Different Fiber Reinforced Concrete Mixtures
Ardoğa, Mehmet Kemal; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-09-21)
Enhancing the tensile performance of concrete is the main advantage when fibers are added to this type of building materials. This improvement is usually measured through indirect methods like bending or split-tensile tests, in a way similar to normal concrete due to the absence of a standard tensile test for such purpose. Naturally, this type of tests does not determine the real tensile strength of the fiber reinforced concrete. Hence an important parameter, that is needed in modelling and designing proces...
Citation Formats
U. E. Altürk, “Effect of increased volume of fibers on the fracture properties of cementitious composites,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Civil Engineering., Middle East Technical University, 2019.