Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic modeling of joints in 3D structural models
Download
index.pdf
Date
2019
Author
Tekin, Merve
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
121
downloads
Cite This
For aviation applications, the noise and vibration cancellation is so important that there are many damping methods and applications used in the field. In military configurations the weight and the visual elegance is not so important that even a blanket may solve the problem. In civil configurations, on the other hand, there should be a lightweight solution for vibration damping. For this reason, since shell structures are widely used on aerospace applications, it is common to use surface damping solutions on aircrafts. Because, surface damping treatments are generally used on shell structures, such as plates and beams, where transverse vibrations problems are critical and resonant frequency vibrations are dominant in a wide broadband due to low thickness. In this thesis study, different novel designs for surface damping treatments are studied and compared by means of their effectiveness. A fuselage like structure is designed and validated by finite element modelling and by experimental results in order to estimate the damping solution effect on application point. Furthermore, due to broadband random vibrations induced on fuselage geometry, a metric is suggested considering the loading condition in order to estimate damping effectiveness. In literature it is seen that in order to increase damping performance, a layer with reduced density and elastic modulus, a spacer layer, is added to the surface damping treatments. By this spacer layer addition, the viscoelastic layer can be shifted away from neutral axis which increases the induced shear strain hence damping performance. Due to high performance low additional weight, standoff damping treatment, a slotted and a sophisticated version of space layered surface damping treatments, is generally used in aerospace structures. With the help of literature and previously optimized spacer geometries for beams, six novel designs are suggested through finite element models and their damping effectiveness are compared with commonly used configurations and adapted versions.
Subject Keywords
Bolted joints.
,
Joint Modeling
,
Dynamics of Bolted Connections
,
Structural Modification Method
,
Joint Parameter Identification
,
Finite Element Modeling.
URI
http://etd.lib.metu.edu.tr/upload/12625032/index.pdf
https://hdl.handle.net/11511/44808
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of a constrained layer surface damping treatment with optimized spacer geometry for plates
Ulubalcı, Barkan; Özgen, Gökhan Osman; Department of Mechanical Engineering (2019)
For aviation applications, the noise and vibration cancellation is so important that there are many damping methods and applications used in the field. In military configurations the weight and the visual elegance is not so important that even a blanket may solve the problem. In civil configurations, on the other hand, there should be a lightweight solution for vibration damping. For this reason, since shell structures are widely used on aerospace applications, it is common to use surface damping solutions ...
Dynamic characterization of bolted joints using FRF decoupling and optimization
Tol, Serife; Özgüven, Hasan Nevzat (2015-03-01)
Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two subs...
On the proximity effects of high-energy magnets on M-19 magnetic steel core
Jayasankar, Seethal; Maharjan, Lizon; Cosoroaba, Eva; Bostancı, Emine; Fahimi, Babak (2017-08-03)
Permanent magnet synchronous motors (PMSM) and asynchronous induction motors (IM) are widely used in the industry for a diverse set of applications. Although the use of induction motors is increasing for industrial applications due to cost inconsistency in rare earth magnets, PMSM motors are still being used because of their compact size, high power density, and greater efficiency. In interior permanent magnet synchronous motor (IPMSM) and surface mounted permanent magnet synchronous motor (SPMSM), the non-...
DYNAMIC MODELING AND CONTROL OF AN ELECTROMECHANICAL CONTROL ACTUATION SYSTEM
Yerlikaya, Umit; Balkan, Raif Tuna (2017-10-13)
Electromechanical actuators are widely used in miscellaneous applications in engineering such as aircrafts, missiles, etc. due to their momentary overdrive capability, long-term storability, and low quiescent power/low maintenance characteristics. This work focuses on electromechanical control actuation systems (CAS) that are composed of a brushless direct current motor, ball screw, and lever mechanism. In this type of CAS, nonlinearity and asymmetry occur due to the lever mechanism itself, saturation limit...
3D linear identification of mechanical joint using FRF decoupling and inverse structural modification methods
Soleimani, Hossein; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2021-01-01)
Mechanical connections such as bolts and rivets are inevitable in most engineering structures and may significantly affect the dynamic behavior of the structures. Therefore, modeling a joint simply and accurately is essential for assembled structures. On the other hand, the most important step is the determination of these joint model parameters which will be used in the calculation of dynamic response of assembled structures. For this purpose, in this paper, FRF Decoupling Method (FRF-DM), proposed in an e...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tekin, “Dynamic modeling of joints in 3D structural models,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.