Current conduction mechanism in Al/p-Si Schottky barrier diodes with native insulator layer at low temperatures

Kanbur, H.
Yildiz, D. E.
Parlak, Mehmet
The forward bias current-voltage (I-V) characteristics of Al/p-Si (MS) Schottky diodes with native insulator layer were measured in the temperature range of 80-300 K. The obtained zero bias barrier height Phi(B0)(I-V), ideality factor (n) and series resistance (R-s) determined by using thermionic emission (TE) mechanism show strong temperature dependence. There is a linear correlation between the Phi(B0)(I-V) and n because of the inhomogeneties in the barrier heights (BHs). Calculated values from temperature dependent I-V data reveal an unusual behaviour such that the (Phi(B0)) decreases, as the n and Rs values are increasing with decreasing absolute temperature, and these changes are more pronounced especially at low temperatures. Such temperature dependence of BH is contradictory with the reported negative temperature coefficient of the barrier height. In order to explain this behaviour we have reported a modification in the expression reverse saturation current I,, including the it and the tunnelling factor (alpha X-1/2 delta) estimated to be 15.5. Therefore, corrected effective barrier height Phi(bef.)(I-V) versus temperature has a negative temperature coefficients (alpha = -2.66 x 10(-4) eV/K) and it is in good agreement with negative temperature coefficients (alpha = -4.73 x 10(-4) eV/K) of Si band gap. In addition, the temperature dependent energy distribution of interface states density N-ss profiles was obtained from the forward bias I-V measurements by taking into account the bias dependence of the Phi(e) and n. The forward bias I-V characteristics confirm that the distribution of N-ss, R-s and interfacial insulator layer are important parameters that the current conduction mechanism of NIS Schottky diodes.


Enhanced peak separation in XPS with external biasing
Ertaş, Gülay; Suzer, S (Elsevier BV, 2005-08-15)
We have demonstrated that the An 4f peaks of the capped gold nanoparticles deposited on a SiO2 (20 nm)/Si substrate can be separated form the An 4f peaks of a gold metal strip, in contact with the same sample, by application of an external voltage bias to the sample rod while recording the XPS spectra. The external bias controls the flow of low-energy electrons falling on to the sample which in-turn controls the extent of the differential charging of the oxide layer leading to shifts in the binding energy o...
Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition
KARAMAT, SHUMAİLA; Sonusen, S.; ÇELİK, ÜMİT; UYSALLI, YİĞİT; Oral, Ahmet (Elsevier BV, 2016-04-15)
In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH),...
OZDEMIR, S; ALTINDAL, S (Elsevier BV, 1994-02-01)
Current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Al-SiOx-pSi metal-insulator-semiconductor (MIS) solar cells were measured in the temperature range between 295 K and 375 K. The semilogarithmic plot of the dark forward current-voltage curves were found to be linear and the slope was almost independent of temperature in the intermediate voltage region. Consequently, the diode quality factor was strongly temperature dependent changing linearly with inverse temperature. A decrease in the z...
Differential charging in SiO2/Si system as determined by XPS
Karadas, F; Ertaş, Gülay; Suzer, S (American Chemical Society (ACS), 2004-01-29)
The Si2p binding and the Si-KLL kinetic energy difference between the SiO2 layer and Si substrate is shown to be influenced by application of external voltage bias to the sample holder due to the differential charging as was already reported earlier (Ulgut, B.; Suzer, S. J. Phys. Chem. B 2003, 107, 2939). The cause of this bias induced (physical)-shift is now proven to be mostly due to partial neutralization by the stray electrons within the vacuum system by (i) introducing additional stray electrons via a ...
Production and characterization of layer by layer sputtered single-phase AgInSe2 thin film by thermal selenization
KALELİ, Murat; ÇOLAKOĞLU, TAHİR; Parlak, Mehmet (Elsevier BV, 2013-12-01)
In this study highly stoichiometric and monophase AgInSe2 thin films were prepared by selenization of Ag-InSe precursors and the effect of the annealing temperature on the structural, electrical and optical properties have been investigated. The Se incorporation during selenization process as a function of temperature and the compositions of the samples were determined by energy dispersive X-ray analysis (EDAX). As prepared and selenized films were characterized using X-ray diffraction (XRD), scanning elect...
Citation Formats
Ş. ALTINDAL, H. Kanbur, D. E. Yildiz, and M. Parlak, “Current conduction mechanism in Al/p-Si Schottky barrier diodes with native insulator layer at low temperatures,” APPLIED SURFACE SCIENCE, pp. 5056–5061, 2007, Accessed: 00, 2020. [Online]. Available: