Nanosize hydroxyapatite: doping with various ions

2011-07-01
Natural crystal sizes of bone minerals are present in the nanoscale regime (specifically less than 100 nm in at least one direction). Therefore, research on the synthesis and characterisation of nanosize hydroxyapatite has gained significant importance in numerous biomedical applications. This is because currently used pure micrometre sized hydroxyapatite has poor mechanical properties, which limits it use in non-load bearing applications. For these reasons, various ions could be easily substituted into nanostructured hydroxyapatite to alter its biocompatibility, sinterability and mechanical properties. In this study, the synthesis methods, biocompatibility, physical, microstructural and nanostructural characteristics of nanocrystalline hydroxyapatite are reviewed. Compared to pure micrometre structured hydroxyapatite, numerous properties (most notably, biocompatibility properties pertinent for orthopedic applications) are improved for nanostructured hydroxyapatite doped with various ions. Such studies demonstrated that the mechanical properties and phase stability of nanohydroxyapatite doped with various ions after sintering at high temperatures should be investigated in more detail.
ADVANCES IN APPLIED CERAMICS

Suggestions

Nanoscale surface finishing studies and characterizations of cadmium zinc telluride crystals
Kabukcuoğlu, Merve Pınar; Turan, Raşit; Department of Physics (2016)
Cadmium Zinc Telluride (Cd1-xZnxTe, CdZnTe) crystals are used in two different applications depending on Zinc (Zn) concentrations. CdZnTe crystals are one of the most promising materials for X-ray and gamma-ray detector applications due to unique material properties such as high atomic number and high resistivity. Wide band gap and high stopping potential of CdZnTe crystals allow operation at room temperature for high performance detectors with several applications including medical imaging, astronomy, and ...
Nanocrystallization in marginal glass forming alloys
Demirtaş, Tuba; Kalay, Yunus Eren; Department of Metallurgical and Materials Engineering (2013)
The marginal glass-forming alloys have attracted much attention due to unique products of devitrification with a very high number density of nuclei up to 10^23 m^-3. Among these alloy systems, utmost interest is given to Al-RE and Al-TM-RE alloys with excellent lightweight mechanical (fracture strength close to 1 GPa) and chemical properties attributed to the presence of an extremely high density of nanocrystals embedded in an amorphous matrix. Classical nucleation theory fails in explaining this abnormal n...
Thermally stimulated currents in n-InS single crystals
Hasanlı, Nızamı; Yuksek, NS (Elsevier BV, 2003-03-24)
Thermally stimulated current measurements are carried out on as-grown n-InS single crystals in the temperature range of 10-125 K. Experimental evidence is found for four trapping centers present in InS. They are located at 20, 35, 60 and 130 meV. The trap parameters have been determined by various methods of analysis, and they agree well with each other.
Optical characterization of CuIn5S8 crystals by ellipsometry measurements
IŞIK, MEHMET; Gasanly, Nizami (2016-04-01)
Optical properties of CuIn5S8 crystals grown by Bridgman method were investigated by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficients were obtained from the analysis of ellipsometry experiments performed in the 1.2-6.2 eV spectral region. Analysis of spectral dependence of the absorption coefficient revealed the existence of direct ban...
Phonon mean free path in few layer, two-dimensional hexagonal structures
Gholivand, Hamed; Dönmezer, Nazlı; Department of Mechanical Engineering (2017)
Two-dimensional materials such as graphene and few layer hexagonal Boron Nitride (h-BN) have been the center of attention in the last decade. These materials provide anisotropic and exclusive properties making them ideal candidates for the modern electronic and optoelectronic applications. With the enhancements in fabrication techniques and the ability to separate thin layers their popularity is continuously increasing. Understanding the thermal properties of these materials is necessary to make better devi...
Citation Formats
Z. Evis, “Nanosize hydroxyapatite: doping with various ions,” ADVANCES IN APPLIED CERAMICS, pp. 311–320, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45608.