Design and analysis of an ultra-thin crystalline silicon heterostructure solar cell featuring SiGe absorber layer

HUSSAIN, Shahzad
Khizar, Muhammad
Turan, Raşit
Here, the authors studied a silicon-germanium (Si1-xGex) absorber layer for the design and simulation of an ultra-thin crystalline silicon solar cell using Silvaco technology computer-aided design. Seeking ways to design and fabricate solar cells using 100m thicker silicon substrates is the subject of intense research efforts among the photovoltaic (PV) community. The aim is to further reduce the substrate thickness to 20m without compromising the efficiency of the solar cell. A thin layer of SiGe film with the Ge composition of 15% has been introduced in this work that assists in absorbing the longer wavelength of the sunlight spectrum. The effects of the doping concentration and absorber layer thickness on the conversion efficiency have been examined. The simulated results exhibited significant enhancement in the sunlight absorption as compared to the reference structure based on crystalline silicon. The highest efficiency of 16.8% with an overall solar cell thickness of approximate to 26m has been observed. The proposed heterostructure solar cell design will support the industrial development of an efficient, low-cost, shorter energy payback time, and light-weight PV technology for its widespread implementation.


Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
Salimi, Arghavan; Turan, Raşit; Department of Micro and Nanotechnology (2019)
Silicon based solar cells are the dominant type of solar cells in the photovoltaic industry. Recently, there have been increasing efforts to develop c-Si solar cells with higher efficiency and lower cost. Among them, silicon heterojunction solar cell (SHJ) is attracting much attention because of its superior performance values demonstrated at both R&D and industrial levels. One of the common limiting criteria is the recombination at the front side which can be solved by providing proper passivation at the f...
Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications
Rufangura, Patrick; Sabah, Cumali (2016-06-25)
This paper proposes a metamaterial absorber design for solar energy harvesting using a simplified and symmetric structure. A unit cell of this design consists of three important layers namely, the bottom metallic layer, which is gold lossy, the intermediate layer: made of a lossy dielectric material that is gallium arsenide and patches which formed by a combination of gold and gallium arsenide. These three important layers are being carefully arranged at the top of a dielectric spacer. The geometric structu...
Effect of Laser Parameters and Post-Texturing Treatments on the Optical and Electrical Properties of Laser Textured c-Si Wafers
RADFAR, Behrad; ES, FIRAT; NASSER, Hisham; AKDEMİR, Ozan; Bek, Alpan; Turan, Raşit (2018-03-21)
Surface plays a crucial role in the performance of crystalline silicon (cSi) based solar cells as it affects both electrical and optical properties. To minimize reflection from the flat surface and thus improve light trapping, the cSi wafers must be textured. For mono-cSi cells, anisotropic alkaline etchants are commonly utilized to create pyramids on the surface. However, this method is not viable for multi-crystalline silicon (mc-Si) wafers due to the presence of different and random crystallographic orie...
Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact
MEHMOOD, Haris; NASSER, Hisham; Tauqeer, Tauseef; HUSSAIN, Shahzad; Ozkol, Engin; Turan, Raşit (2018-03-25)
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intr...
Fabrication and characterization of PEDOT:PSS hole transport layers for silicon solar cells
Türkay, Deniz; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Heterojunction silicon solar cells have gained considerable interest in recent years with the demonstration of record-high device performances. However, these devices are typically based on inorganic layers fabricated at high temperatures under vacuum environment, using toxic precursors. The low temperature budget, non-toxic chemical contents, and wide range of adjustability in physical and electrical properties make poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) a promising candidate a...
Citation Formats
S. HUSSAIN, H. MEHMOOD, M. Khizar, and R. Turan, “Design and analysis of an ultra-thin crystalline silicon heterostructure solar cell featuring SiGe absorber layer,” IET CIRCUITS DEVICES & SYSTEMS, pp. 309–314, 2018, Accessed: 00, 2020. [Online]. Available: