Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts

2020-08-01
Bakir, Ali Alperen
Atik, Resul
Özerinç, Sezer
Fused deposition modeling (FDM) filaments made of recycled materials are desirable for environmentally friendly and sustainable manufacturing of prototypes and load-bearing components in many applications. We investigate the effect of FDM process parameters on the mechanical properties of 3D-printed parts made of recycled polyethylene terephthalate (rPET) filaments. Increasing the nozzle temperature from 230 degrees C to 260 degrees C improves the strength of the specimens by 100%. Using a raster orientation parallel to the loading direction improves the ductility by more an order of magnitude. Specimen orientation and infill ratio also influence the mechanical properties. The temperature and the orientation effects are related to the quality of fusion between the printed lines. A modified Gibson-Ashby model correctly predicts the strength as a function of the infill ratio. Through the optimization of process parameters, the mechanical strength of 3D-printed rPET structures can reach that of injection-molded PET, making FDM a suitable manufacturing technique for load-bearing applications.
JOURNAL OF APPLIED POLYMER SCIENCE

Suggestions

Effect of a carbon black surface treatment on the microwave properties of poly(ethylene terephthalate)/carbon black composites
Koysuren, Ozcan; Yesil, Sertan; Bayram, Göknur; Secmen, Mustafa; Aydın Çivi, Hatice Özlem (Wiley, 2008-07-05)
A surface treatment was applied to carbon black to improve the electrical and microwave properties of poly(ethylene terephthalate) (PET)-based composites. Three different formamide solutions with 1, 2, and 3 wt % concentrations were prepared to modify the surface chemistry of carbon black. Microwave properties such as the absorption loss, return loss, insertion loss, and dielectric constant were measured in the frequency range of 812 GHz (X-band range). Composites containing formamide-treated carbon black e...
Effect of Solid State Grinding on Properties of PP/PET Blends and Their Composites with Carbon Nanotubes
Koysuren, Ozcan; Yesil, Sertan; Bayram, Göknur (Wiley, 2010-12-05)
In this study, it was aimed to improve electrical conductivity and mechanical properties of conductive polymer composites, composed of polypropylene (PP), poly(ethylene terephthalate) (PET), and carbon nanotubes (CNT). Grinding, a type of solid state processing technique, was applied to PP/PET and PP/PET/CNT systems to reduce average domain size of blend phases and to improve interfacial adhesion between these phases. Surface energy measurements showed that carbon nanotubes might be selectively localized at...
Effect of fillers on thermal and mechanical properties of polyurethane elastomer
Benli, S; Yilmazer, U; Pekel, F; Özkar, Saim (Wiley, 1998-05-16)
The effects of five different types of fillers on the thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane elastomers were explored to develop a filled polyurethane elastomeric Liner for rocket motors with hydroxyl-terminated polybutadiene-based composite propellants. Two types of carbon black, silica, aluminum oxide, and zirconium(III)oxide were used as filler. Based on the improvement in the tensile properties and the erosion resistance achieved in the first part of th...
Studies on the modification of interphase/interfaces by use of plasma in certain polymer composite systems
Akovali, G; Dilsiz, N (Wiley, 1996-04-01)
Calcium carbonate and carbon fiber surfaces were modified by use of a series of plasma polymers at different selected plasma conditions, and the effect of surface modification, mainly on the mechanical properties of composite systems prepared, was investigated. The matrices for the composite systems employed were polypropylene and epoxy, for the chalk and C fiber, respectively. Mechanical and thermal studies and scanning electron microscopy (SEM) pictures revealed that inclusion surfaces, being independent ...
Effect of surface treatment on electrical conductivity of carbon black filled conductive polymer composites
Koysuren, Ozcan; Yesil, Sertan; Bayram, Göknur (Wiley, 2007-06-05)
Two different types of surface modifiers, 3-aminopropyltriethoxysilane and formamide, were applied to carbon black (CB) particles to lower electrical resistivity of polymer composites prepared by treated CB. Two different matrices, low-density polyethylene and nylon 6, were chosen to compound with surface modified CB. Surface energy of CB was increased by adding amine or amide functional groups during surface treatment of CB. According to electron spectroscopy for chemical analysis (ESCA), chemical modifica...
Citation Formats
A. A. Bakir, R. Atik, and S. Özerinç, “Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46055.