Synthesis and characterization of conducting copolymers of (S)-2-methylbutyl-2-(3-thienyl)acetate with pyrrole and thiophene

Levent, A
Toppare, Levent Kamil
Cianga, I
Yagci, Y
Polymerization of methylbutyl-2-(3-thienyl)-acetate (MBTA) was achieved by constant current electrolysis at low temperature. Subsequently, the syntheses of block copolymers of polyMBTA were accomplished in the presence of either pyrrole or thiophene by constant potential electrolysis. Moreover, the copolymer of MBTA with thiophene was obtained with constant potential electrolysis.


Effect of temperature and membrane preparation parameters on gas permeation properties of polymethacrylates
Guelmues, Serguel Acikalin; Yılmaz, Levent (Wiley, 2007-11-15)
Permeabilities of N-2, Ar, O-2, CO2, and H-2 gases in PEMA (Polyethylmethaerylate) membranes have been measured above and below glass transition in the temperature range of 25-70 degrees C. The permeabilities of the gases were observed increasing with temperature. Arrhenius plot of permeability versus temperature data showed that there is a slope discontinuity at near to T-g of PEMA. In addition, the effects of membrane preparation parameters by solvent casting method (percentage of polymer in solvent, anne...
Analysis of the Raman Frequency Shifts for the Lattice Modes and Vibrons Related to the Thermodynamic Quantities in the eta Phase of Solid Nitrogen
Yurtseven, Hasan Hamit (Walter de Gruyter GmbH, 2013-08-01)
The thermodynamic quantities of the isothermal compressibility, thermal expansion and the specific heat are calculated here as a function of pressure by using the observed Raman frequencies of the lattice modes and vibrons in the. phase of solid nitrogen. The Pippard relations and their spectroscopic modifications are constructed, and the slope dP/dT is deduced from the Raman frequency shifts in this phase of N-2. It is shown that the thermodynamic quantities can be predicted from the Raman frequency shifts...
Calculation of the C-P-C-V as a function of temperature close to the melting point in benzene
Tari, O.; Yurtseven, Hasan Hamit (Informa UK Limited, 2018-01-01)
The temperature dependence of the C-P - C-V is calculated at constant pressures using the observed volume data from the literature for solid and liquid benzene near the melting point. Our calculated values are compared with some earlier treatments and we find that they disagree at constant pressures for the solid benzene, whereas for the liquid benzene agreement is reasonable in terms of the order of magnitude between our calculated C-P - C-V and those predicted from the Peng-Robinson equation of state. Our...
Synthesis of ferrocenyl pyrazoles by the reaction of (2-formyl-1-chlorovinyl)ferrocene with hydrazines
Zora, Metin (Elsevier BV, 2007-10-15)
Synthesis of ferrocenyl-substituted pyrazoles via the reaction between (2-formyl-1-chlorovinyl)ferrocene and hydrazine derivatives is described. Depending upon the substitution pattern of hydrazine, the reaction affords 1-alkyl/aryl-5-ferrocenylpyrazoles and/or 1-alkyl/ aryl-3-ferrocenylpyrazoles. The reaction appears to be general for a variety of hydrazine derivatives.
Synthesis and structural characterization of a novel seven-coordinate cobalt(II) complex: 2,9-Bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride
BAYSAL, AKIN; AYDEMİR, MURAT; DURAP, FEYYAZ; Özkar, Saim; Yildirim, Leyla Tatar (Elsevier BV, 2011-05-31)
Condensation reaction of 2,9-dicarboxaldehyde-1,10-phenanthroline with 2-aminoethanol followed by NaBH4 reduction yielded the polydentate Schiff base ligand 2,9-bis(ethanolamine)-1,10-phenanthroline in its reduced form. This ligand was characterized by elemental analysis, LC-MS, IR, UV-Vis and NMR spectroscopy. Reaction of the reduced Schiff base ligand with aqueous solution of cobalt(II) chloride affords 2,9-bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride in high yield. Single crystals of th...
Citation Formats
A. Levent, L. K. Toppare, I. Cianga, and Y. Yagci, “Synthesis and characterization of conducting copolymers of (S)-2-methylbutyl-2-(3-thienyl)acetate with pyrrole and thiophene,” MACROMOLECULAR CHEMISTRY AND PHYSICS, pp. 1118–1122, 2003, Accessed: 00, 2020. [Online]. Available: