ANALYSIS OF FRAMES WITH NONPRISMATIC MEMBERS

1991-06-01
ELMEZAINI, N
BALKAYA, C
CITIPITIOGLU, E
The linear elastic behavior of frames with nonprismatic members is investigated by using isoparametric plane stress finite elements. It is determined that the conventional methods of analysis for these types of structures lead to erroneous results. Comparison of the fixed end moments, stiffness, and carry-over factors of nonprismatic members available in the literature with those computed by finite element analysis reveals large discrepancies. Based on an extensive study, sources and magnitudes of errors are presented. Recommendations for proper modeling by using conventional frame analysis computer programs are made.
JOURNAL OF STRUCTURAL ENGINEERING-ASCE

Suggestions

MODELING OF CONTROL FORCES FOR KINEMATICAL CONSTRAINTS IN MULTIBODY SYSTEMS DYNAMICS - A NEW APPROACH
IDER, SK (Elsevier BV, 1991-01-01)
Conventionally kinematical constrains in multibody systems are treated similar to geometrical constraints and are modeled by constraint reaction forces which are perpendicular to constraint surfaces. However, in reality, one may want to achieve the desired kinematical conditions by control forces having different directions in relation to the constraint surfaces. In this paper the conventional equations of motion for multibody systems, subject to kinematical constraints, are generalized by introducing gener...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Analysis of the flexural strength of prestressed concrete flanged sections
Baran, Eray; French, Catherine (Precast/Prestressed Concrete Institute, 2005-01-01)
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. R...
Assessment of improved nonlinear static procedures in FEMA-440
Akkar, Dede Sinan; Metin, Ash (American Society of Civil Engineers (ASCE), 2007-09-01)
Nonlinear static procedures (NSPs) presented in the FEMA-440 document are evaluated for nondegrading three- to nine-story reinforced concrete moment-resisting frame systems. Evaluations are based on peak single-degree-of-freedom displacement, peak roof, and interstory drifts estimations. A total of 78 soil site records and 24 buildings with fundamental periods varying between 0.3 s-1.3 s are used in 2,832 linear and nonlinear response-history analyses to derive the descriptive statistics. The moment magnitu...
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
Citation Formats
N. ELMEZAINI, C. BALKAYA, and E. CITIPITIOGLU, “ANALYSIS OF FRAMES WITH NONPRISMATIC MEMBERS,” JOURNAL OF STRUCTURAL ENGINEERING-ASCE, pp. 1573–1592, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67229.