Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Impact modified polyamide-6/organoclay nanocomposites: Processing and characterization
Date
2008-02-01
Author
Isik, Isil
YILMAZER, ÜLKÜ
Bayram, Göknur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
The effects of melt state compounding of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH) terpolymer and/or three types of organoclays (Cloisitel(R) 15A, 25A, and 3013) on thermal and mechanical properties and morphology of polyamide-6 are investigated. E-BA-MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young's modulus and elongation at break, but the addition of E-BA-MAH had the opposite effect. XRD patterns showed that the interlayer spacing for the organoclays Cloisite 25A and Cloisite 30B increased in both polyamide-6/organoclay binary nanocomposites and in polyamide-6/organoclay/impact modifier ternary systems. TEM analysis showed that exfoliated-intercalated nanocomposites were formed. The crystallinities of polyamide-6/organoclay nanocomposites were in general lower than that of polyamide-6 (except for Cloisite 15A). In ternary nanocomposites, crystallinities generally were lower than those of polyamide-6/organoclay nanocomposites. Cloisite 15A containing ternary nanocomposites had higher tensile and impact strengths and Young's modulus than the ternary nanocomposites prepared with Cloisite 25A and Cloisite 30B, owing to its surface hydrophobicity and compatibility with the impact modifier.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/46509
Journal
POLYMER COMPOSITES
DOI
https://doi.org/10.1002/pc.20355
Collections
Department of Chemical Engineering, Article