Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Viscoelastic properties of reactive and non-reactive blends of ethylene-methyl acrylate copolymers with styrene-maleic anhydride copolymer
Date
2001-02-01
Author
Bayram, G
Yılmazer, Ülkü
Xanthos, M
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
The effects of compatibilizing reactions on the viscoelastic properties and morphology of ethylene-methyl acrylate copolymers were studied. Potentially reactive blends of styrene-maleic anhydride copolymer (SMAH) and a terpolymer of ethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) were compared with a nonreactive blend of SMAH and an ethylene/methyl acrylate (E-MA) copolymer with similar rheological properties. Melt mixing was carried out in a batch mixer and in a co-rotating twin screw extruder. The morphology of the reactive blends showed smaller domain sizes than the non-reactive blends, and the viscoelastic properties of the blends were very different. The storage and loss moduli and the complex viscosity of the reactive blends were greater than those of non-reactive blends. The reactive blends had a higher zero shear viscosity, plateau modulus and mean relaxation time than their non-reactive counterparts, indicating a higher degree of melt elasticity. The melt elasticity was maximum at 25% functionalized ethylene-methyl acrylate concentration.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/57442
Journal
POLYMER ENGINEERING AND SCIENCE
DOI
https://doi.org/10.1002/pen.10726
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives
ÇAMURLU, PINAR; Kayahan, Senem; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
In this study, construction of novel biosensors for the determination of phenolic compound was performed via immobilization of tyrosinase during the electrochemical synthesis of conducting block copolymers of 2-thiophen-3-yl-alkyl ester derivatives with 3,4-ethylenedioxythiophene and synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultant biosensors were characterized in terms of their maximum reaction rates, Michaelis-Menten constants (Km), temperature and pH stabilities. All the copolymer mat...
Reactive extrusion of poly(ethylene terephthalate)-(ethylene/methyl acrylate/glycidyl methacrylate)-organoclay nanocomposites
Alyamac, Elif; Yılmazer, Ülkü (Wiley, 2007-04-01)
This study was conducted to investigate the effects of component concentrations and addition order of the components on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amount...
Degradation of Poly(2-hydroxyethyl methacrylate) Obtained by Radiation in Aqueous Solution
Varguen, Elif; Usanmaz, Ali (Informa UK Limited, 2010-01-01)
The degradation of poly(hydroxyethyl methacrylate), PHEMA obtained by -radiation induced polymerization of HEMA in aqueous solution, was studied. The polymer was a gel type and insoluble in common organic solvents. The DSC thermogram of the polymer gave a Tg value at 88.2 degrees C and an endothermic peak showed further polymerization or crosslinking at 110-160 degrees C. The degradation observed in TGA was a depolymerization type. However, the FT-IR of TGA fragments showed no monomer, which was degraded fu...
Conducting copolymers of random and block copolymers of electroactive and liquid crystalline monomers with pyrrole and thiophene
Camurlu, Pinar; Toppare, Levent Kamil; Yilmaz, Faruk; Yagci, Yusuf; Galli, Giancarlo (Informa UK Limited, 2007-03-01)
Block and random copolymers having 3-methyl thienylmethacrylate and 6-(4-cyanobiphenyl-4'-oxy) hexyl acrylate moieties were utilized as precursor polymers in this study. Electrochemical copolymerizations were performed in the presence of thiophene or pyrrole in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB) at constant potential. The characterizations were performed by cyclic voltammetry (CV), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravime...
Impact modified polyamide-6/organoclay nanocomposites: Processing and characterization
Isik, Isil; YILMAZER, ÜLKÜ; Bayram, Göknur (Wiley, 2008-02-01)
The effects of melt state compounding of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH) terpolymer and/or three types of organoclays (Cloisitel(R) 15A, 25A, and 3013) on thermal and mechanical properties and morphology of polyamide-6 are investigated. E-BA-MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young'...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Bayram, Ü. Yılmazer, and M. Xanthos, “Viscoelastic properties of reactive and non-reactive blends of ethylene-methyl acrylate copolymers with styrene-maleic anhydride copolymer,”
POLYMER ENGINEERING AND SCIENCE
, pp. 262–274, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57442.