Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of n -Butane to 1,3-Butadiene
Date
2018-11-02
Author
Camacho-Bunquin, Jeffrey
Ferrandon, Magali S.
Sohn, Hyuntae
Kropf, A. Jeremy
Yang, Ce
Wen, Jianguo
Hackler, Ryan A.
Liu, Cong
Çelik, Gökhan
Marshall, Christopher L.
Stair, Peter C.
Delferro, Massimiliano
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
161
views
0
downloads
Cite This
The development of on-purpose 1,3-butadiene (BDE) technologies remains an active area in catalysis research, because of the importance of BDE in industrial polymer production. Here, we report on a nonoxidative dehydrogenation catalyst for the production of BDE prepared by atomically precise installation of platinum sites on a Zn-modified SiO2 support via atomic layer deposition (ALD). In situ reduction X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), CO chemisorption, and high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) imaging of activated PtZn/SiO2, revealed the formation of a uniform, well-distributed subnanometer- to nanometer-sized PtZn (1.2 +/- 0.3 nm) alloy as the active catalytic species.
Subject Keywords
Atomic layer deposition
,
Non-oxidative dehydrogenation
,
Nanoparticles; alloy
,
1,3-butadiene
,
Alloy
URI
https://hdl.handle.net/11511/46629
Journal
ACS Catalysis
DOI
https://doi.org/10.1021/acscatal.8b02794
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Microstructural and dielectric properties of naphthalene based polyamide/β-Ni(OH)2 nanocomposites
Sezer, Selda; Öz, Erdinc; ALTIN, SERDAR; Vural, Sema; GÜLTEK, AHMET; KÖYTEPE, SÜLEYMAN; Nilüfer Kıvılcım, F. (2018-01-01)
Background: Aromatic polyamides are important materials having outstanding thermal, electronic and mechanical properties among high performance polymers and industrial plastics. In addition, aromatic polyamides can be utilized in electronic devices with their low dielectric constant which indicates the storage capacity of these devices. Objective: Free volume is very important for dielectric materials and increase in free volume of a polymer reduces its dielectric constant. The aims of the current study are...
Determination of indium by vapour generation atomic absorption spectrometry
Özdemir, Erhan; Ataman, Osman Yavuz; Department of Chemistry (2014)
Determination of indium is important due to its growing importance in semiconductor industry and health concerns in occupational area. Due to extremely low abundance of indium in the earth crust, very sensitive and accurate methods are needed for its determination. Vapour generation atomic absorption spectrometry is a fast and economical technique for determination of conventional hydride generation elements such as As, Bi, Ge, Pb, Sb, Se, Sn, Te. However, there are very limited number of studies conducted ...
Microporous patterned electrodes for color-matched electrochromic polymer displays
Aubert, Pierre-Henri; ARGUN, Avni A.; Çırpan, Ali; TANNER, David B.; REYNOLDS, John R. (American Chemical Society (ACS), 2004-06-15)
The emergence of electroactive and conducting polymers offers new opportunities for the design of materials for electrochromic devices (ECDs). Of these, poly(3,4-alkylenedioxythiophene)s (PXDOTs) and their derivatives exhibit the most promising electrochromic (EC) properties. Here, we report the use of highly porous metallized membranes which allow the production of patterned, rapid-switching, reflective ECDs. Using poly(3,4-ethylenedioxithiophene) (PEDOT), poly(3.,4-propylenedioxythiophene) (PProDOT), and ...
Use of Nanoparticles in Tissue Engineering and Regenerative Medicine
Fathi-Achachelouei, Milad; Knopf-Marques, Helena; Ribeiro da Silva, Cristiane Evelise; Barthes, Julien; Bat, Erhan; Tezcaner, Ayşen; Vrana, Nihal Engin (2019-05-24)
Advances in nanoparticle (NP) production and demand for control over nanoscale systems have had significant impact on tissue engineering and regenerative medicine (TERM). NPs with low toxicity, contrasting agent properties, tailorable characteristics, targeted/stimuli-response delivery potential, and precise control over behavior (via external stimuli such as magnetic fields) have made it possible their use for improving engineered tissues and overcoming obstacles in TERM. Functional tissue and organ replac...
Molecular dynamics study of random and ordered metals and metal alloys
Kart, Hasan Hüseyin; Tomak, Mehmet; Department of Physics (2004)
The solid, liquid, and solidification properties of Pd, Ag pure metals and especially PdxAg1-x alloys are studied by using the molecular dynamics simulation. The effects of temperature and concentration on the physical properties of PdxÞAg1-x are analyzed. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used as interatomic interactions which enable one to investigate the thermodynamic, static, and dynamical properties of transition metals. The simulation results such as cohesive ene...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Camacho-Bunquin et al., “Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of n -Butane to 1,3-Butadiene,”
ACS Catalysis
, pp. 10058–10063, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46629.