Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of olefin-based compatibilizers on the morphology, thermal and mechanical properties of ABS/polyamide-6 blends
Date
2007-04-15
Author
Ozkoc, Guralp
Bayram, Göknur
Bayramli, Erdal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
In this study, commercially available epoxidized and maleated olefinic copolymers, EMA-GMA (ethylene-methyl acrylate-glycidyl methacrylate) and EnBACO-MAH (ethylene-n butyl acrylate-carbon monoxide-maleic anhydride), were used at 0, 5, and 10% by weight to compatibilize the blend composed of ABS (acrylonitrile-butadiene-styrene) terpolymer and PA6 (polyamide 6). Compatibilizing performance of these two olefinic polymers was investigated from blend morphologies, thermal and mechanical properties as a function of blend composition, and compatibilizer loading level. Scanning electron microscopy (SEM) studies showed that incorporation of compatibilizer resulted in a fine morphology with reduced dispersed particle diameter at the presence of 5% compatibilizer. The crystallization behavior of PA6 phase in the blends was explored for selected blend compositions by differential scanning calorimetry (DSC). At high compatibilizer level a decrease in the degree of crystallization was observed. In 10% compatibilizer containing blends, formation of gamma-crystals was observed contrary to other compatibilizer compositions. The behavior of the compatibilized blend system in tensile testing showed the negative effect of using excess compatibilizer. Different trends in yield strengths and strain at break values were observed depending on compatibilizer type, loading level, and blend composition. With 5% EnBACO-MAH, the blend toughness was observed to be the highest at room temperature. (c) 2007 Wiley Periodicals, Inc.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/46720
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.25848
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Effect of Gas Permeation Temperature and Annealing Procedure on the Performance of Binary and Ternary Mixed Matrix Membranes of Polyethersulfone, SAPO-34, and 2-Hydroxy 5-Methyl Aniline
Oral, Edibe Eda; Yılmaz, Levent; Kalıpçılar, Halil (Wiley, 2014-09-05)
This study investigated the effect of annealing time and temperature on gas separation performance of mixed matrix membranes (MMMs) prepared from polyethersulfone (PES), SAPO-34, and 2-hydroxy 5-methyl aniline (HMA). A postannealing period at 120 degrees C for a week extensively increased the reproducibility and stability of MMMs, but for pure PES membranes no postannealing was necessary for stable and reproducible performance. The effect of operation temperature was also investigated. The permeabilities of...
Effects of micro-nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide
CAN, ULAŞ; Kaynak, Cevdet (Wiley, 2020-02-01)
The first aim of this study was to compare influences of various contents of the micro- (200 nm) and nano (50 nm)-sized titania (TiO2) particles especially on the mechanical performance of the polylactide (PLA) biopolymer. Micro- and nano-composites were prepared by twin-screw extruder melt mixing, while the specimens were shaped by compression molding. Scanning electron microscope analyses and mechanical tests revealed that due to the most efficient uniform distribution in the matrix, the best improvements...
Effects of microcompounding process parameters on the properties of ABS/polyamide-6 blends based nanocomposites
Oezkoc, Gueralp; Bayram, Göknur; Quaedflieg, Martin (Wiley, 2008-03-05)
Melt intercalation method was applied to produce acrylonitrile-butadiene-styrene/polyamide-6 (ABS/ PA6) blends based organoclay nanocomposites using a conical twin-screw microcompounder. The blend was compatibilized using a maleated olefinic copolymer. The effects of microcompounding conditions such as screw speed, screw rotation-mode (co- or counter-), and material parameters such as blend composition and clay loading level on the morphology of the blends, dispersibility of nanoparticles, and mechanical pr...
Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy
Arikan, A; Kaynak, Cevdet; Tincer, T (Wiley, 2002-10-01)
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and a...
Effect of Solid State Grinding on Properties of PP/PET Blends and Their Composites with Carbon Nanotubes
Koysuren, Ozcan; Yesil, Sertan; Bayram, Göknur (Wiley, 2010-12-05)
In this study, it was aimed to improve electrical conductivity and mechanical properties of conductive polymer composites, composed of polypropylene (PP), poly(ethylene terephthalate) (PET), and carbon nanotubes (CNT). Grinding, a type of solid state processing technique, was applied to PP/PET and PP/PET/CNT systems to reduce average domain size of blend phases and to improve interfacial adhesion between these phases. Surface energy measurements showed that carbon nanotubes might be selectively localized at...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ozkoc, G. Bayram, and E. Bayramli, “Effects of olefin-based compatibilizers on the morphology, thermal and mechanical properties of ABS/polyamide-6 blends,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 926–935, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46720.