A Novel Near-IR Effective Pyrene-Based Donor-Acceptor Electrochrome

2015-04-01
Sefer, Emre
HACIOGLU, Serife O.
Tonga, Murat
Toppare, Levent Kamil
Çırpan, Ali
KOYUNCU, SERMET
In this work, a novel donor-acceptor electrochromic monomer (3HTP), containing a pyrene subunit connected to a quinoxaline acceptor bridge, is synthesized. The corresponding polymer, poly-(3HTP), is directly deposited onto an indium tin oxide (ITO)/glass surface via an electrochemical process. Atomic force microscopy (AFM) images reveal that the electrochemically deposited poly-(3HTP) has a smooth surface due to self-assembly of the planar pyrene subunit. Electrochemical and optical properties are investigated via cyclic voltammetry and UV-vis absorption measurements. The polymer film shows a multielectrochromic feature at both anodic and cathodic regimes. Poly-(3HTP) exhibits a strong near-infrared (NIR) absorption at the oxidized state with an optical contrast of 88% (at 1800 nm), a very fast response time of 0.5 s and fast switching times, and long-term stability. Density functional theory calculations reveal that the molecule has a high planarity, and the NIR absorption arises from a strong intramolecular charge transfer from the polymer backbone to the planar pyrene subunit.
MACROMOLECULAR CHEMISTRY AND PHYSICS

Suggestions

A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing
BULUT, Umut; Oyku Sayin, Vuslat; Altin, Yasin; Can Cevher, Sevki; Çırpan, Ali; Celik Bedeloglu, Ayse; Soylemez, Saniye (2023-01-01)
Herein, a specific and stable biosensor for glucose using a flexible, modified electrode with a carbon nanofiber (CNF) and a novel conjugated polymer including three moieties of benzotriazole, benzodithiophene, and benzenediamine (P-BDT-BTz:BDA) as a platform was designed. For this purpose, polyacrylonitrile (PAN) nanofiber mats were obtained by a solution-based electrospinning method. PAN nanofiber mats were stabilized and carbonized to turn into carbon nanofibers and the sensing platform was formed by com...
A novel promising biomolecule immobilization matrix: Synthesis of functional benzimidazole containing conducting polymer and its biosensor applications
Uzun, Sema Demirci; Unlu, Naime Akbasoglu; Sendur, Merve; Kanik, Fulya Ekiz; TİMUR, SUNA; Toppare, Levent Kamil (2013-12-01)
In order to construct a robust covalent binding between biomolecule and immobilization platform in biosensor preparation, a novel functional monomer 4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2yl)benzaldehyde (BIBA) was designed and successfully synthesized. After electropolymerization of this monomer, electrochemical and spectroelectrochemical properties were investigated in detail. To fabricate the desired biosensor, glucose oxidase (GOx) was immobilized as a model enzyme on the polymer coated graphite ...
A New High-Performance Blue to Transmissive Electrochromic Material and Use of Silver Nanowire Network Electrodes as Substrates
YÜKSEL, Recep; ATAOGLU, Emre; TURAN, Janset; ALPUGAN, Ece; HACIOGLU, Serife Ozdemir; Toppare, Levent Kamil; Çırpan, Ali; Ünalan, Hüsnü Emrah; Günbaş, Emrullah Görkem (2017-05-15)
Synthesis of a novel, high-performance blue to transmissive switching electrochromic material is described. The polymer (P1) was prepared by both electrochemical (P1E) and chemical (P1C) means from the corresponding monomer. The electrochemically synthesized polymer (P1E) revealed 64% optical contrast change (on ITO) in the visible region and very fast switching times of 0.32 s (coloration) and 0.90 s (bleaching). On the other hand, the chemically synthesized, solution processable polymer (P1C) also showed ...
A novel multi-electrochromic polymer based on selenophene and benzotriazole via electrochemical and chemical polymerization
Demir, Fatma; Keles, Duygu; Karabag, Aliekber; Çırpan, Ali; Toppare, Levent Kamil (Informa UK Limited, 2019-03-04)
In this study, a novel donor-acceptor type monomer was designed based on selenophene and benzotriazole with a bulky pendant group and synthesized through Stille coupling reaction. The monomer was polymerized electrochemically by using cyclic voltammetry and also chemically by oxidation in the presence of FeCl3. Both polymers were then compared in terms of their optical properties, electrochemical and spectroelectrochemical behaviors, kinetic and colorimetric properties and surface morphologies. Independent ...
A new p and n dopable selenophene derivative and its electrochromic properties
Ardahan, Gülben; Toppare, Levent Kamil; Department of Chemistry (2008)
A novel electrically conducting polymer, poly(2-dodecyl-4,7-di(selenophen-2-yl)benzotriazole) (Poly(SBT)), containing selenophene as a strong donor and benzotriazole as a strong acceptor group was synthesized by electrochemical polymerization. Homopolymerization and copolymerization ( in the presence of 3,4-ethylenedioxythiophene (EDOT) ) was achieved in acetonitrile/ dichloromethane(95/5 v/v) with 0.1M tetrabutylammonium hexafluorophosphate (TBAPF6). The electrochemical and optical properties of homopolyme...
Citation Formats
E. Sefer, S. O. HACIOGLU, M. Tonga, L. K. Toppare, A. Çırpan, and S. KOYUNCU, “A Novel Near-IR Effective Pyrene-Based Donor-Acceptor Electrochrome,” MACROMOLECULAR CHEMISTRY AND PHYSICS, pp. 829–836, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46812.