Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Novel Near-IR Effective Pyrene-Based Donor-Acceptor Electrochrome
Date
2015-04-01
Author
Sefer, Emre
HACIOGLU, Serife O.
Tonga, Murat
Toppare, Levent Kamil
Çırpan, Ali
KOYUNCU, SERMET
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
In this work, a novel donor-acceptor electrochromic monomer (3HTP), containing a pyrene subunit connected to a quinoxaline acceptor bridge, is synthesized. The corresponding polymer, poly-(3HTP), is directly deposited onto an indium tin oxide (ITO)/glass surface via an electrochemical process. Atomic force microscopy (AFM) images reveal that the electrochemically deposited poly-(3HTP) has a smooth surface due to self-assembly of the planar pyrene subunit. Electrochemical and optical properties are investigated via cyclic voltammetry and UV-vis absorption measurements. The polymer film shows a multielectrochromic feature at both anodic and cathodic regimes. Poly-(3HTP) exhibits a strong near-infrared (NIR) absorption at the oxidized state with an optical contrast of 88% (at 1800 nm), a very fast response time of 0.5 s and fast switching times, and long-term stability. Density functional theory calculations reveal that the molecule has a high planarity, and the NIR absorption arises from a strong intramolecular charge transfer from the polymer backbone to the planar pyrene subunit.
Subject Keywords
NIR electrochromic polymers
,
Planar structure
,
Pyrenes
URI
https://hdl.handle.net/11511/46812
Journal
MACROMOLECULAR CHEMISTRY AND PHYSICS
DOI
https://doi.org/10.1002/macp.201400584
Collections
Department of Chemistry, Article