Modelling of a spherical electric discharge at atmospheric pressure under higher modes of incident microwaves

2005-01-01
Rafatov, İsmail
LELEVKIN, VM
We present a spherical microwave discharge model, which takes into account the higher modes of the incident electromagnetic waves. The discharge model is constructed on the basis of the channel approximation of the LTE plasma. Numerical experiments are carried out for the discharge in an argon at atmospheric pressure. Results are presented for the characteristics of the discharge plasma against the external parameters (the size of the discharge chamber and the applied electromagnetic field mode, power and frequency). (c) 2005 WILEY-VCH Verlag GmbH W Co. KGaA, Weinheim.
CONTRIBUTIONS TO PLASMA PHYSICS

Suggestions

Study of trapping and recombination centres in Tl2InGaTe4 chain crystals by dark electrical conductivity and photoconductivity measurements
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Informa UK Limited, 2007-01-01)
Dark electrical conductivity and photoconductivity of Tl2InGaTe4 single crystals have been measured and analyzed in the temperature region 100-300 K. The dark electrical conductivity measurements revealed an intrinsic- or extrinsic-type of conductivity above or below 210 K, respectively. From intrinsic conductivity data analysis, the energy band gap of Tl2InGaTe4 crystals was determined as 0.85 eV. In the extrinsic region, the dark conductivity arises from a donor energy level located at 0.30 eV below the c...
Experimental study on the velocity limits of magnetized rotating plasmas
Teodorescu, C.; Clary, R.; Ellis, R. F.; Hassam, A. B.; Lunsford, R.; Uzun Kaymak, İlker Ümit; Young, W. C. (AIP Publishing, 2008-04-01)
An experimental study on the physical limits of the rotation velocity of magnetized plasmas is presented. Experiments are performed in the Maryland Centrifugal Experiment (MCX) [R. F. Ellis , Phys. Plasmas 12, 055704 (2005)], a mirror magnetic field plasma rotating azimuthally. The externally applied parameters that control the plasma characteristics-applied voltage, external magnetic field, and fill pressure-are scanned across the entire available range of values. It is found that the plasma rotation veloc...
Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Account of nonlocal ionization by fast electrons in the fluid models of a direct current glow discharge
Rafatov, İsmail; KUDRYAVTSEV, A. A. (AIP Publishing, 2012-09-01)
We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the "simple" and "extended" fluid frameworks. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752419]
Defect luminescence in undoped p-type GaSe
Aydinli, A; Hasanlı, Nızamı; Goksen, K (Informa UK Limited, 2001-12-01)
Photoluminescence (PL) spectra of undoped single crystals of the layered semiconductor GaSe have been measured in the temperature range from 10 K to room temperature and in the wavelength range from 635 to 750 nm. Two wide bands centred at 644 and 695 nm have been observed at T=10 K. A detailed analysis of the spectra obtained by varying the excitation intensity and temperature resulted in the identification of the levels involved. A simple model is proposed to account for the observed data.
Citation Formats
İ. Rafatov and V. LELEVKIN, “Modelling of a spherical electric discharge at atmospheric pressure under higher modes of incident microwaves,” CONTRIBUTIONS TO PLASMA PHYSICS, pp. 139–154, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46851.