Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effect of YF3 on hot-pressed hydroxyapatite and monoclinic zirconia composites
Date
2007-09-15
Author
Evis, Zafer
Doremus, Robert H.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Monoclinic zirconia and hydroxyapatite (HA) composites with or without 5 wt% YF3 were synthesized to investigate their mechanical properties and phase stability. HA decomposed to tri-calcium-phosphate and CaZrO3 in the 25 wt% ZrO2-75 wt% HA composite. However, thermal stability of the phases, densification, hardness and fracture toughness were improved when 5 wt% YF3 was added into the system. Five weight percent YF3 increased the transformation of monoclinic-ZrO2 into tetragonal/cubic-ZrO2 by incorporating the Y3+ ions present in YF3 when the hot pressing temperature was increased from 1100 to 1200 degrees C. Moreover, the stability of HA was also improved by incorporating the F- ions from YF3 in the place of OH- ions in HA. Substitution of OH- by F- ions was verified by the change in HA's hexagonal lattice parameters. A fracture toughness of 1.93 MPa root m was calculated for the same composite.
Subject Keywords
Biomaterials
,
Ceramics
,
Precipitation
,
X-ray diffraction
,
Phase transitions
URI
https://hdl.handle.net/11511/47016
Journal
MATERIALS CHEMISTRY AND PHYSICS
DOI
https://doi.org/10.1016/j.matchemphys.2007.04.028
Collections
Department of Engineering Sciences, Article