Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
The Development and Performance Characterization of Turbine Prototypes for a MEMS Spirometer
Date
2016-02-01
Author
GOREKE, Utku
HABİBİABAD, Sahar
Azgın, Kıvanç
Serinağaoğlu Doğrusöz, Yeşim
Beyaz, Mustafa Ilker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
The design, optimization, and performance characterization of turbine prototypes for the development of a Microelectromechanical Systems spirometer is reported. Four different turbines were designed based on large-scale Savonius turbine architecture. The number of turbine blades was optimized through finite-element simulations to maximize the induced moment and rotational speed at normal breathing flow rates. The turbines were manufactured and tested for their speed performance with respect to input flow rate, pressure difference, and actuation power, showing good agreement with the simulation results. The highest rotational speed was achieved with involute-bladed turbine design with eight blades, and was measured to be 10.56 kr/min at the peak 25-lpm flow rate. Real-life testing with this design was carried out on healthy subjects to demonstrate its capability of performing respiration flow rate measurements. The turbine prototypes presented in this paper allow for the development of low-cost and portable MEMS spirometers for remote-and self-monitoring of lung malfunctions in chronic obstructive pulmonary disease and asthma diseases.
Subject Keywords
Spirometer
,
Respiration flow rate
,
Micro turbine
,
MEMS
URI
https://hdl.handle.net/11511/47360
Journal
IEEE SENSORS JOURNAL
DOI
https://doi.org/10.1109/jsen.2015.2488104
Collections
Department of Mechanical Engineering, Article