Improved load distribution for controller area network

2017-06-29
The main requirement for the design of the controller are network (CAN) is to guarantee that each message response time is smaller than their specified deadline. In practical in-vehicle applications, messages on CAN are released with offsets in order to avoid message bursts that lead to undesirably large response times. In this paper, new algorithms for the choice of suitable message offsets are developed and it is shown that these algorithms outperform existing algorithms.

Suggestions

Evaluation of response time distributions for controller area network messages
Batur, Ahmet; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2018-07-09)
The response time distribution (RTD) for messages on the controller area network (CAN) represents the probability of experiencing each possible response time. The existing literature suggests to use the RTD for the design of real-time applications based on CAN. This paper shows that the RTD does not capture the response time behavior on CAN well due to gradual clock drifts among CAN nodes. Instead
Offset assignment on controller area network: Improved algorithms and computational evaluation
Batur, Ahmet; Schmidt, Klaus Verner; Schmidt, Şenan Ece (2017-07-26)
The basic requirement for the design of the Controller Area Network (CAN) for in-vehicle communication is to guarantee that the worst-case response time (WCRT) of each message is smaller than their specified deadline. In addition, it is desired to achieve small WCRTs that leave sufficient slack to the message deadline.
Computation of Response Time Distributions for Messages on the Controller Area Network
Batur, Ahmet; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2018-08-23)
The response time of messages is an important parameter for the design of in-vehicle networks based on the controller area network (CAN). The message transmission on CAN is affected by several non-deterministic factors such as stuff bits that are added to CAN frames depending on the message payload or changing phases among the asynchronous CAN nodes because of clock drifts. The resulting probabilistic nature of message response times on CAN is captured by the response time distribution (RTD) that quantifies...
Development of strategies for reducing the worst-case message response times on the Controller Area Network
Çelik, Vakkas; Schmidt, Şenan Ece; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2012)
The controller area network (CAN) is the de-facto standard for in-vehicle communication. The growth of time-critical applications in modern cars leads to a considerable increase in the message tra c on CAN. Hence, it is essential to determine e cient message schedules on CAN that guarantee that all communicated messages meet their timing constraints. The aim of this thesis is to develop o set scheduling strategies that find feasible schedules for higher bus load levels compared to conventional CAN scheduling...
Robust Priority Assignments for Extending Existing Controller Area Network Applications
Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2014-02-01)
The usage of the controller area network (CAN) as an in-vehicle communication bus requires finding feasible and robust priority orders such that each message transmitted on the bus meets its specified deadline and tolerates potential transmission errors. Although such priority orders can be determined by available algorithms whenever they exist, it is always assumed that a CAN priority order is computed from scratch. In practical applications, it is frequently necessary to extend an existing message set by ...
Citation Formats
A. Batur, Ş. E. Schmidt, and K. V. Schmidt, “Improved load distribution for controller area network,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47506.