Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Improved load distribution for controller area network
Date
2017-06-29
Author
Batur, Ahmet
Schmidt, Şenan Ece
Schmidt, Klaus Verner
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
135
views
0
downloads
Cite This
The main requirement for the design of the controller are network (CAN) is to guarantee that each message response time is smaller than their specified deadline. In practical in-vehicle applications, messages on CAN are released with offsets in order to avoid message bursts that lead to undesirably large response times. In this paper, new algorithms for the choice of suitable message offsets are developed and it is shown that these algorithms outperform existing algorithms.
Subject Keywords
Electronic mail
,
Time factors
,
Algorithm design and analysis
,
Dogs
,
Schedules
,
Reactive power
,
Standards
,
Offset scheduling
,
Response times
URI
https://hdl.handle.net/11511/47506
DOI
https://doi.org/10.1109/siu.2017.7960475
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Evaluation of response time distributions for controller area network messages
Batur, Ahmet; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2018-07-09)
The response time distribution (RTD) for messages on the controller area network (CAN) represents the probability of experiencing each possible response time. The existing literature suggests to use the RTD for the design of real-time applications based on CAN. This paper shows that the RTD does not capture the response time behavior on CAN well due to gradual clock drifts among CAN nodes. Instead
Offset assignment on controller area network: Improved algorithms and computational evaluation
Batur, Ahmet; Schmidt, Klaus Verner; Schmidt, Şenan Ece (2017-07-26)
The basic requirement for the design of the Controller Area Network (CAN) for in-vehicle communication is to guarantee that the worst-case response time (WCRT) of each message is smaller than their specified deadline. In addition, it is desired to achieve small WCRTs that leave sufficient slack to the message deadline.
Computation of Response Time Distributions for Messages on the Controller Area Network
Batur, Ahmet; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2018-08-23)
The response time of messages is an important parameter for the design of in-vehicle networks based on the controller area network (CAN). The message transmission on CAN is affected by several non-deterministic factors such as stuff bits that are added to CAN frames depending on the message payload or changing phases among the asynchronous CAN nodes because of clock drifts. The resulting probabilistic nature of message response times on CAN is captured by the response time distribution (RTD) that quantifies...
Development of strategies for reducing the worst-case message response times on the Controller Area Network
Çelik, Vakkas; Schmidt, Şenan Ece; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2012)
The controller area network (CAN) is the de-facto standard for in-vehicle communication. The growth of time-critical applications in modern cars leads to a considerable increase in the message tra c on CAN. Hence, it is essential to determine e cient message schedules on CAN that guarantee that all communicated messages meet their timing constraints. The aim of this thesis is to develop o set scheduling strategies that find feasible schedules for higher bus load levels compared to conventional CAN scheduling...
Robust Priority Assignments for Extending Existing Controller Area Network Applications
Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2014-02-01)
The usage of the controller area network (CAN) as an in-vehicle communication bus requires finding feasible and robust priority orders such that each message transmitted on the bus meets its specified deadline and tolerates potential transmission errors. Although such priority orders can be determined by available algorithms whenever they exist, it is always assumed that a CAN priority order is computed from scratch. In practical applications, it is frequently necessary to extend an existing message set by ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Batur, Ş. E. Schmidt, and K. V. Schmidt, “Improved load distribution for controller area network,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47506.