Analysis of photonic-crystal problems with MLFMA and approximate Schur preconditioners

Ergül, Özgür Salih
Malas, Tahir
Kilinç, Seçil
Saritaş, Serkan
Gürel, Levent
We consider fast and accurate solutions of electromagnetics problems involving three-dimensional photonic crystals (PhCs). Problems are formulated with the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE) discretized with the Rao-Wilton-Glisson functions. Matrix equations are solved iteratively by the multilevel fast multipole algorithm. Since PhC problems are difficult to solve iteratively, robust preconditioning techniques are required to accelerate iterative solutions. We show that novel approximate Schur preconditioners enable efficient solutions of PhC problems by reducing the number of iterations significantly for both CTF and JMCFIE.