Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane

Tonbul, Yalcin
Özkar, Saim
Nanozirconia supported ruthenium(0) nanoparticles (Ru-0/ZrO2) were prepared by impregnation of ruthenium(III) cations on the surface of zirconia followed by their reduction with sodium borohydride at room temperature. Ru-0/ZrO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, XRD, TEM, SEM EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on zirconia and the resulting Ru-0/ZrO2 is a highly active and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 173 min(-1) at 25 degrees C. The reusability and catalytic lifetime tests reveal that Ru-0/ZrO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 67% of the initial catalytic activity even after the fifth run and Ru-0/ZrO2 provides 72,500 turnovers (mol H-2/mol Ru) before deactivation at 25 degrees C. Our report also includes the results of kinetic studies depending on the catalyst concentration and temperature to determine the activation energy (E-a = 58 2 kJ/mol) for hydrolytic dehydrogenation of AB.


Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application
Bezgin, Buket; CİHANER, ATİLLA; Önal, Ahmet Muhtar (Elsevier BV, 2008-09-01)
Poly(9-fluorenecarboxylic acid) (PFCA) was synthesized by electrochemical oxidation of 9-fluorenecarboxylic acid (FCA) using a mixture of nitromethane and boron trifluoride diethyl etherate as the solvent and tetrabutylammonium tetrafluoroborate as the supporting electrolyte. An insoluble and conducting brownish-orange film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 1.15 V. Characterization of the polymer film has been carried out using Four...
Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane
Tonbul, Yalcin; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2019-10-01)
Magnetically separable catalysts attract considerable attention in catalysis due to their facile separation from the reaction medium. This propensity is crucial for efficient multiple use of precious noble metal nanoparticles in catalysis. In fact, the isolation of catalysts from the reaction medium by filtration and washing results usually in the loss of huge amount of activity in the subsequent run of catalysis. Although many transition metal nanoparticle catalysts have been reported for the H-2 generatio...
Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Manna, Joydev; AKBAYRAK, SERDAR; Özkar, Saim (Elsevier BV, 2017-12-15)
Nickel(0) nanoparticles supported on cobalt ferrite (Ni-0/CoFe2O4), polydopamine coated cobalt ferrite (NP0/PDA-CoFe2O4) or silica coated cobalt ferrite (NP0/SiO2-CoFe2O4) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni-0/CoFe2O4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 +/- 0.1 degrees C. However, the initial catalytic activit...
ZHU, J; Karakaya, İshak; THOMPSON, WT (The Electrochemical Society, 1988-01-01)
To further the understanding of electrolytes of value in industrial magnesium electrolysis, the reversible emf for the formation of in fused salts containing and was studied. The data made possible the calculation of thermodynamic solution properties which were used with other data to construct features of the ternary phase diagram. The multiple discrete complex anion (MDCA) model was tested against the thermodynamic findings from the present study. Reasonable agreement was obtained between the experimen...
Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and Re-Interpretation
Özkar, Saim (American Chemical Society (ACS), 2017-12-14)
A quantitative kinetics and mechanistic re-analysis is performed of an important 2016 paper that described the formation of Ag-n nanoparticles from the polyol reduction of silver nitrate in the presence of poly(N-vinylpyrrolidone) under microwave heating. Elegantly and expertly obtained, in operando synchrotron high-energy X-ray diffraction (HEXRD) data, integrated with the microwave heating for the first time, were used to follow the Ag-n nanoparticle formation reaction in real time and to obtain time-reso...
Citation Formats
Y. Tonbul, S. AKBAYRAK, and S. Özkar, “Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane,” JOURNAL OF COLLOID AND INTERFACE SCIENCE, pp. 287–294, 2018, Accessed: 00, 2020. [Online]. Available: