Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Properties of Tl4Se3S single crystals and characterization of Ag/Tl4Se3S Schottky barrier diodes
Date
2010-03-01
Author
QASRAWI, ATEF FAYEZ HASAN
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
The main physical properties of Tl4Se3S single crystals were investigated for the first time. Particularly, the crystal data, Debye temperature, dark electrical resistivity and Hall effect in addition to the temperature dependent current-voltage characteristics and photosensitivity of the Ag/Tl4Se3S Schottky barrier diode were studied. The X-ray diffraction patterns have revealed that the crystal exhibited a single phase of tetragonal structure belonging to the D-4h(18) - 14mcm space group. A Debye temperature of 100 K was calculated using the results of the X-ray diffraction analysis. The dark electrical resistivity and Hall-effect measurements indicated that the samples exhibits p-type conduction with an electrical resistivity, carrier concentration and Hall mobility of 6.20 x 10(3) Omega cm, 1.16 x 10(12) cm(-3) and 873 cm(2) V-1 s(-1), respectively. The crystals were observed to have Schottky diode properties. The Ag/Tl4Se3S Schottky barrier device bias voltage was observed to depend on the crystal direction and on temperature. It was found that the calculated energy barrier height decreased and the diode ideality factor increased with temperature decreasing. The photosensitivity-light intensity dependence of this device was found to be linear reflecting the ability of using it in optoelectronics.
Subject Keywords
General Physics and Astronomy
,
General Materials Science
URI
https://hdl.handle.net/11511/47697
Journal
CURRENT APPLIED PHYSICS
DOI
https://doi.org/10.1016/j.cap.2009.08.003
Collections
Department of Physics, Article